2Q7W : Structural Studies Reveals the Inactivation of E. coli L-aspartate aminotransferase (S)-4,5-amino-dihydro-2-thiophenecarboxylic acid (SADTA) via two mechanisms at pH 6.0

  • Dali Liu (Contributor)
  • Edvin V. Pozharski (Contributor)
  • Bryan W. Lepore (Contributor)
  • Mengmeng Fu (Contributor)
  • Richard B Silverman (Contributor)
  • Gregory A. Petsko (Contributor)
  • Dagmar Ringe (Contributor)



Experimental Technique/Method:X-RAY DIFFRACTION
Release Date:2007-09-04
Deposition Date:2007-06-07
Revision Date:2011-07-13
Molecular Weight:45475.91
Macromolecule Type:Protein
Residue Count:396
Atom Site Count:3380

As a mechanism-based inactivator of PLP-enzymes, (S)-4-amino-4,5-dihydro-2-thiophenecarboxylic acid (SADTA) was cocrystallized with Escherichia coli aspartate aminotransferase (l-AspAT) at a series of pH values ranging from 6 to 8. Five structural models with high resolution (1.4-1.85 A) were obtained for l-AspAT-SADTA complexes at pH 6.0, 6.5, 7.0, 7.5, and 8.0. Electron densities of the models showed that two different adducts had formed in the active sites. One adduct was formed from SADTA covalently linked to pyridoxal 5'-phosphate (PLP) while the other adduct was formed with the inhibitor covalently linked to Lysine246,1 the active site lysine. Moreover, there is a strong indication based on the electron densities that the occurrence of the two adducts is pH dependent. We conclude that SADTA inactivates l-AspAT via two different mechanisms based on the binding direction of the inactivator. Additionally, the structural models also show pH dependence of the protein structure itself, which provided detailed mechanistic implications for l-AspAT.
Date made available2007

Cite this