Deep learning for cancer type classification and driver gene identification



Abstract Background Genetic information is becoming more readily available and is increasingly being used to predict patient cancer types as well as their subtypes. Most classification methods thus far utilize somatic mutations as independent features for classification and are limited by study power. We aim to develop a novel method to effectively explore the landscape of genetic variants, including germline variants, and small insertions and deletions for cancer type prediction. Results We proposed DeepCues, a deep learning model that utilizes convolutional neural networks to unbiasedly derive features from raw cancer DNA sequencing data for disease classification and relevant gene discovery. Using raw whole-exome sequencing as features, germline variants and somatic mutations, including insertions and deletions, were interactively amalgamated for feature generation and cancer prediction. We applied DeepCues to a dataset from TCGA to classify seven different types of major cancers and obtained an overall accuracy of 77.6%. We compared DeepCues to conventional methods and demonstrated a significant overall improvement (p
Date made available2021

Cite this