Histone H3 lysine-to-methionine mutants as a paradigm to study chromatin signaling

  • Marc Morgan (Stowers Institute for Medical Research) (Contributor)
  • Xin Gao (Contributor)
  • Jessica Jackson (Contributor)
  • Ryan A. Rickels (Contributor)
  • Laurence Florens (Contributor)
  • Ali Shilatifard (Contributor)



Histone H3 lysine27-to-methionine (H3K27M) gain-of-function mutations occur in highly aggressive pediatric gliomas. Here, we establish a Drosophila animal model for the pathogenic histone H3K27M mutation and show that its overexpression resembles Polycomb repressive complex 2 (PRC2) loss-of-function phenotypes, causing de-repression of PRC2 target genes and developmental perturbations. Similarly, a H3K9M mutant depletes H3K9 methylation levels and suppresses position-effect variegation in various Drosophila tissues. The histone H3K9 demethylase KDM3B/JHDM2 associates with H3K9M nucleosomes and its overexpression in Drosophila results in loss of H3K9 methylation levels and heterochromatic silencing defects. Here we establish histone lysine-to-methionine mutants as robust in vivo tools for inhibiting methylation pathways that also function as biochemical reagents for capturing site-specific histone-modifying enzymes, thus providing molecular insight into chromatin-signaling pathways. RNA-seq of wing imaginal discs expressing either H3.3WT-FLAG-HA or H3.3K27M-FLAG-HA.
Date made available2014

Cite this