Mitosis in circulating tumor cells stratifies highly aggressive breast carcinomas

  • Daniel L. Adams (Creator)
  • Diane K. Adams (Creator)
  • S. Stefansson (Contributor)
  • Christian Haudenschild (Creator)
  • Stuart S. Martin (Creator)
  • Monica Charpentier (Creator)
  • Saranya Chumsri (Contributor)
  • Massimo Cristofanilli (Creator)
  • Cha Mei Tang (Contributor)
  • R. Katherine Alpaugh (Contributor)



Abstract Background Enumeration of circulating tumor cells (CTCs) isolated from the peripheral blood of breast cancer patients holds promise as a clinically relevant, minimally invasive diagnostic test. However, CTC utility has been limited as a prognostic indicator of survival by the inability to stratify patients beyond general enumeration. In comparison, histological biopsy examinations remain the standard method for confirming malignancy and grading malignant cells, allowing for cancer identification and then assessing patient cohorts for prognostic and predictive value. Typically, CTC identification relies on immunofluorescent staining assessed as absent/present, which is somewhat subjective and limited in its ability to characterize these cells. In contrast, the physical features used in histological cytology comprise the gold standard method used to identify and preliminarily characterize the cancer cells. Here, we superimpose the methods, cytologically subtyping CTCs labeled with immunohistochemical fluorescence stains to improve their prognostic value in relation to survival. Methods In this single-blind prospective pilot study, we tracked 36 patients with late-stage breast cancer over 24 months to compare overall survival between simple CTC enumeration and subtyping mitotic CTCs. A power analysis (1-β = 0. 9, α = 0.05) determined that a pilot size of 30 patients was sufficient to stratify this patient cohort; 36 in total were enrolled. Results Our results confirmed that CTC number is a prognostic indicator of patient survival, with a hazard ratio 5.2, p = 0.005 (95 % CI 1.6–16.5). However, by simply subtyping the same population based on CTCs in cytological mitosis, the hazard ratio increased dramatically to 11.1, p 
Date made available2016

Cite this