• 1943 Citations
19982020

Research output per year

If you made any changes in Pure these will be visible here soon.

Personal profile

Education/Academic qualification

Industrial Engineering, PhD, Georgia Institute of Technology

… → 1999

Applied Mathematics, BS, University of Ljubljana

… → 1994

Research interests

  • Machine learning and artificial intelligence - text analytics, deep learning, optimization
  • Transportation
  • Finance
  • Bioinformatics

Fingerprint Dive into the research topics where Diego Klabjan is active. These topic labels come from the works of this person. Together they form a unique fingerprint.

Network Recent external collaboration on country level. Dive into details by clicking on the dots.

Grants

  • Research Output

    Listwise learning to rank by exploring unique ratings

    Zhu, X. & Klabjan, D., Jan 20 2020, WSDM 2020 - Proceedings of the 13th International Conference on Web Search and Data Mining. Association for Computing Machinery, Inc, p. 798-806 9 p. (WSDM 2020 - Proceedings of the 13th International Conference on Web Search and Data Mining).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    Open Access
  • Subset selection for multiple linear regression via optimization

    Park, Y. W. & Klabjan, D., Jul 1 2020, In : Journal of Global Optimization. 77, 3, p. 543-574 32 p.

    Research output: Contribution to journalArticle

  • Activation Ensembles for Deep Neural Networks

    Klabjan, D. & Harmon, M., Dec 2019, Proceedings - 2019 IEEE International Conference on Big Data, Big Data 2019. Baru, C., Huan, J., Khan, L., Hu, X. T., Ak, R., Tian, Y., Barga, R., Zaniolo, C., Lee, K. & Ye, Y. F. (eds.). Institute of Electrical and Electronics Engineers Inc., p. 206-214 9 p. 9006069. (Proceedings - 2019 IEEE International Conference on Big Data, Big Data 2019).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  • A Team Based Player Versus Player Recommender Systems Framework for Player Improvement

    Joshi, R., Gupta, V., Li, X., Cui, Y., Wang, Z., Ravari, Y. N., Klabjan, D., Sifa, R., Parsaeian, A., Drachen, A. & Demediuk, S., Jan 29 2019, Proceedings of the Australasian Computer Science Week Multiconference, ACSW 2019. Association for Computing Machinery, a45. (ACM International Conference Proceeding Series).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  • Mixture-based Multiple Imputation Model for Clinical Data with a Temporal Dimension

    Xue, Y., Klabjan, D. & Luo, Y., Dec 2019, Proceedings - 2019 IEEE International Conference on Big Data, Big Data 2019. Baru, C., Huan, J., Khan, L., Hu, X. T., Ak, R., Tian, Y., Barga, R., Zaniolo, C., Lee, K. & Ye, Y. F. (eds.). Institute of Electrical and Electronics Engineers Inc., p. 245-252 8 p. 9005672. (Proceedings - 2019 IEEE International Conference on Big Data, Big Data 2019).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution