• 2428 Citations
20042020
If you made any changes in Pure, your changes will be visible here soon.

Research Output 2004 2019

Filter
Conference contribution
2018

Feedback-based tree search for reinforcement learning

Jiang, D. R., Ekwedike, E. & Liu, H., Jan 1 2018, 35th International Conference on Machine Learning, ICML 2018. Dy, J. & Krause, A. (eds.). International Machine Learning Society (IMLS), Vol. 5. p. 3572-3590 19 p.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Reinforcement learning
Artificial intelligence
Feedback
Decision trees
Learning algorithms
1 Citation (Scopus)

Fully decentralized multi-agent reinforcement learning with networked agents

Zhang, K., Yang, Z., Liu, H., Zhang, T. & Başar, T., Jan 1 2018, 35th International Conference on Machine Learning, ICML 2018. Krause, A. & Dy, J. (eds.). International Machine Learning Society (IMLS), p. 9340-9371 32 p. (35th International Conference on Machine Learning, ICML 2018; vol. 13).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Reinforcement learning
Learning algorithms
Telecommunication networks

Graphical nonconvex optimization via an adaptive convex relaxation

Sun, Q., Tan, K. M., Liu, H. & Zhang, T., Jan 1 2018, 35th International Conference on Machine Learning, ICML 2018. Krause, A. & Dy, J. (eds.). International Machine Learning Society (IMLS), Vol. 11. p. 7638-7645 8 p.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Symmetry. saddle points, and global optimization landscape of nonconvex matrix factorization

Li, X., Haupt, J., Lu, J., Wang, Z., Arora, R., Liu, H. & Zhao, T., Oct 23 2018, 2018 Information Theory and Applications Workshop, ITA 2018. Institute of Electrical and Electronics Engineers Inc., 8503215. (2018 Information Theory and Applications Workshop, ITA 2018).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Matrix Factorization
Global optimization
Saddlepoint
Factorization
Global Optimization

The edge density barrier: Computational-statistical tradeoffs in combinatorial inference

Lu, H., Cao, Y., Lu, J., Liu, H. & Wang, Z., Jan 1 2018, 35th International Conference on Machine Learning, ICML 2018. Dy, J. & Krause, A. (eds.). International Machine Learning Society (IMLS), p. 5119-5148 30 p. (35th International Conference on Machine Learning, ICML 2018; vol. 7).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Testing
Computational complexity
Statistics
2017
1 Citation (Scopus)

High-dimensional non-Gaussian single index models via thresholded score function estimation

Yang, Z., Balasubramanian, K. & Liu, H., Jan 1 2017, 34th International Conference on Machine Learning, ICML 2017. International Machine Learning Society (IMLS), Vol. 8. p. 5878-5887 10 p.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Experiments
2016
12 Citations (Scopus)

A truth discovery approach with theoretical guarantee

Xiao, H., Gao, J., Wang, Z., Wang, S., Su, L. & Liu, H., Aug 13 2016, KDD 2016 - Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Association for Computing Machinery, Vol. 13-17-August-2016. p. 1925-1934 10 p.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Maximum likelihood

On the statistical limits of convex relaxations: A case study

Wang, Z., Gu, Q. & Liu, H., Jan 1 2016, 33rd International Conference on Machine Learning, ICML 2016. Weinberger, K. Q. & Balcan, M. F. (eds.). International Machine Learning Society (IMLS), p. 2055-2067 13 p. (33rd International Conference on Machine Learning, ICML 2016; vol. 3).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Hardness
3 Citations (Scopus)

Sparse nonlinear regression: Parameter estimation under nonconvexity

Yang, Z., Wang, Z., Liu, H., Eldar, Y. C. & Zhang, T., Jan 1 2016, 33rd International Conference on Machine Learning, ICML 2016. Weinberger, K. Q. & Balcan, M. F. (eds.). International Machine Learning Society (IMLS), p. 3668-3677 10 p. (33rd International Conference on Machine Learning, ICML 2016; vol. 5).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Linear regression
Parameter estimation
8 Citations (Scopus)

Stochastic variance reduced optimization for nonconvex sparse learning

Li, X., Zhao, T., Arora, R., Liu, H. & Haupt, J., Jan 1 2016, 33rd International Conference on Machine Learning, ICML 2016. Balcan, M. F. & Weinberger, K. Q. (eds.). International Machine Learning Society (IMLS), Vol. 2. p. 1448-1460 13 p. (33rd International Conference on Machine Learning, ICML 2016; vol. 2).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Parameter estimation
Experiments
2015
5 Citations (Scopus)

Robust estimation of transition matrices in high dimensional heavy-tailed vector autoregressive processes

Qiu, H., Xu, S., Han, F., Liu, H. & Caffo, B., Jan 1 2015, 32nd International Conference on Machine Learning, ICML 2015. Bach, F. & Blei, D. (eds.). International Machine Learning Society (IMLS), Vol. 3. p. 1843-1851 9 p.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Time series
Finance
Economics
2012
13 Citations (Scopus)

Exponential concentration for mutual information estimation with application to forests

Liu, H., Lafferty, J. & Wasserman, L., Dec 1 2012, Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012, NIPS 2012. Vol. 4. p. 2537-2545 9 p. (Advances in Neural Information Processing Systems; vol. 4).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Random variables
Probability density function
10 Citations (Scopus)

Semiparametric principal component analysis

Han, F. & Liu, H., Dec 1 2012, Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012, NIPS 2012. Vol. 1. p. 171-179 9 p.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Principal component analysis
Gaussian distribution
Covariance matrix
Eigenvalues and eigenfunctions
Feature extraction
3 Citations (Scopus)

Smooth-projected neighborhood pursuit for high-dimensional nonparanormal graph estimation

Zhao, T., Roeder, K. & Liu, H., Dec 1 2012, Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012, NIPS 2012. Vol. 1. p. 162-170 9 p.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Computational efficiency
Learning algorithms
7 Citations (Scopus)

The nonparanormal SKEPTIC

Liu, H., Han, F., Yuan, M., Lafferty, J. & Wasserman, L., Oct 10 2012, Proceedings of the 29th International Conference on Machine Learning, ICML 2012. Vol. 2. p. 1415-1422 8 p. (Proceedings of the 29th International Conference on Machine Learning, ICML 2012; vol. 2).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Parameter estimation
5 Citations (Scopus)

Transelliptical component analysis

Han, F. & Liu, H., Dec 1 2012, Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012, NIPS 2012. Vol. 1. p. 359-367 9 p.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Eigenvalues and eigenfunctions
Principal component analysis
Logistics
Feature extraction
Computer simulation
29 Citations (Scopus)

Transelliptical graphical models

Liu, H., Han, F. & Zhang, C. H., Dec 1 2012, Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012, NIPS 2012. Vol. 1. p. 800-808 9 p.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Parameter estimation
Recovery
2010
3 Citations (Scopus)

Forest density estimation

Gupta, A., Lafferty, J., Liu, H., Wasserman, L. & Xu, M., Dec 1 2010, COLT 2010 - The 23rd Conference on Learning Theory. p. 394-406 13 p.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

experiment
11 Citations (Scopus)

Graph-valued regression

Liu, H., Chen, X., Lafferty, J. & Wasserman, L., Dec 1 2010, Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010, NIPS 2010.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Trees (mathematics)
7 Citations (Scopus)

Learning spatial-temporal varying graphs with applications to climate data analysis

Chen, X., Liu, Y., Liu, H. & Carbonell, J. G., Nov 1 2010, AAAI-10 / IAAI-10 - Proceedings of the 24th AAAI Conference on Artificial Intelligence and the 22nd Innovative Applications of Artificial Intelligence Conference. Vol. 1. p. 425-430 6 p.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Gaussian distribution
Climate change
Learning algorithms

Multivariate dyadic regression trees for sparse learning problems

Liu, H. & Chen, X., Dec 1 2010, Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010, NIPS 2010. (Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010, NIPS 2010).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Decision trees
126 Citations (Scopus)

Stability approach to regularization selection (StARS) for high dimensional graphical models

Liu, H., Roeder, K. & Wasserman, L., Dec 1 2010, Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010, NIPS 2010.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Microarrays
Sampling
2009
115 Citations (Scopus)

Blockwise coordinate descent procedures for the multi-task Lasso, with applications to neural semantic basis discovery

Liu, H., Palatucci, M. & Zhang, J., Dec 9 2009, Proceedings of the 26th International Conference On Machine Learning, ICML 2009. p. 649-656 8 p.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Semantics
Brain
Chemical activation
4 Citations (Scopus)
Semantics
Brain
Chemical activation
4 Citations (Scopus)

Blockwise Coordinate Descent Procedures for the Multi-task Lasso, with Applications to Neural Semantic Basis Discovery

Liu, H., Palatucci, M. & Zhang, J., Sep 15 2009, Proceedings of the 26th Annual International Conference on Machine Learning, ICML'09. 81. (ACM International Conference Proceeding Series; vol. 382).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Semantics
Brain
Chemical activation
6 Citations (Scopus)

Nonparametric greedy algorithms for the sparse learning problem

Liu, H. & Chen, X., Dec 1 2009, Advances in Neural Information Processing Systems 22 - Proceedings of the 2009 Conference. p. 1141-1149 9 p.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

16 Citations (Scopus)

Nonparametric regression and classification with joint sparsity constraints

Liu, H., Lafferty, J. & Wasserman, L., Dec 1 2009, Advances in Neural Information Processing Systems 21 - Proceedings of the 2008 Conference. p. 969-976 8 p.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Microarrays
Logistics
Genes
Experiments
50 Citations (Scopus)

SpAM: Sparse additive models

Ravikumar, P., Liu, H., Lafferty, J. & Wasserman, L., Dec 1 2009, Advances in Neural Information Processing Systems 20 - Proceedings of the 2007 Conference.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Statistical methods
2006
1 Citation (Scopus)

Towards the prediction of protein abundance from tandem mass spectrometry data

Bonner, A. J. & Liu, H., Jul 3 2006, Proceedings of the Sixth SIAM International Conference on Data Mining. Vol. 2006. p. 599-603 5 p.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Mass spectrometry
Tissue
Proteins
Cell culture
Isotopes
2 Citations (Scopus)

Visual sign language recognition based on HMMs and auto-regressive HMMs

Yang, X., Jiang, F., Liu, H., Yao, H., Gao, W. & Wang, C., Jul 7 2006, Gesture in Human-Computer Interaction and Simulation: 6th International Gesture Workshop, GW 2005, Revised Selected Papers. p. 80-83 4 p. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); vol. 3881 LNAI).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Visual Languages
Sign Language
Hidden Markov models
Markov Model
Training Algorithm
2005
9 Citations (Scopus)

XAR-Miner: Efficient association rules mining for XML data

Zhang, S., Zhang, J., Liu, H. & Wang, W., Dec 1 2005, 14th International World Wide Web Conference, WWW2005. p. 894-895 2 p.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Miners
Association rules
XML
Data storage equipment
10 Citations (Scopus)

X-warehouse: Building query pattern-driven data

Zhang, J., Wang, W., Liu, H. & Zhang, S., Dec 1 2005, 14th International World Wide Web Conference, WWW2005. p. 896-897 2 p. (14th International World Wide Web Conference, WWW2005).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Warehouses
XML
Data warehouses
2004

An effective and efficient data cleaning technique in large databases

Zhang, J. & Liu, H., Dec 1 2004, Proceedings of the International Conference on Information and Knowledge Engineering, IKE'04. Arabnia, H. R. (ed.). p. 501-504 4 p.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Cleaning

An extended linear strategy bridging the gap between regression and SVD decomposition for modeling peptide tandem mass spectrometry data

Liu, H., Dec 1 2004, Proceedings of the International Conference on Mathematics and Engineering Techniques in Medicine and Biological Sciences, METMBS'04. Valafar, F. & Valafar, H. (eds.). 1 p.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Singular value decomposition
Peptides
Mass spectrometry
Proteins

A novel dimensionality reduction technique based on independent component analysis for modeling microarray gene expression data

Liu, H., Kustra, R. & Zhang, J., Dec 1 2004, Proceedings of the International Conference on Artificial Intelligence, IC-AI'04 and Proceedings of the International Conference on Machine Learning; Models, Technologies and Applications, MLMTA'04). Arabnia, H. R. & Youngsong, M. (eds.). Vol. 2. p. 1133-1139 7 p.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Independent component analysis
Microarrays
Gene expression
Higher order statistics
Bioinformatics

A robot path planning approach based on generalized semi-infinite optimization

Liu, H., Tang, Q. & Wang, Y., Dec 1 2004, 2004 IEEE Conference on Robotics, Automation and Mechatronics. p. 768-773 6 p.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Constrained optimization
Collision avoidance
Motion planning
Robotics
Robots
1 Citation (Scopus)

Comparison of discrimination methods for peptide classification in tandem mass spectrometry

Bonner, A. & Liu, H., Dec 1 2004, Proceedings of the 2004 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, CIBCB'04. p. 160-167 8 p.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Peptides
Mass spectrometry
Proteins
Discriminant analysis
Tissue

Generalized semi-infinite optimization and its application in robotics' path planning problem

Liu, H., Yang, X., Zhang, J. & Wang, Y., Dec 1 2004, Proceedings of the International Conference on Artificial Intelligence, IC-AI'04 and Proceedings of the International Conference on Machine Learning; Models, Technologies and Applications, MLMTA'04). Arabnia, H. R. & Youngsong, M. (eds.). Vol. 2. p. 1147-1153 7 p.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Collision avoidance
Motion planning
Robotics
Constrained optimization
Mathematical transformations

Statistical issues with labeled sample size analysis for semi-supervised linear discriminant analysis

Liu, H., Yang, X., Wu, D., Yuan, X., Zhang, J. & Kustra, R., Dec 1 2004, Proceedings of the International Conference on Artificial Intelligence, IC-AI'04 and Proceedings of the International Conference on Machine Learning; Models, Technologies and Applications, MLMTA'04). Arabnia, H. R. & Youngsong, M. (eds.). Vol. 2. p. 1007-1012 6 p.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Gaussian distribution
Discriminant analysis
Supervised learning