A New Method for Compact, High-Performance Atom Interferometric Sensors

Project: Research project

Project Details


Light-pulse atom interferometry--in which laser pulses split, recombine, and interfere quantum mechanical atomic matter waves--is a valuable tool for a broad set of practical measurements and fundamental physics tests. Recent advances have enabled atom interferometers that enclose a large spacetime area between their two arms (up to tens of centimeters spatial separation between the arms, for a duration on the scale of one second), dramatically improving interferometer sensitivity to inertial and gravitational forces. The sensitivity of these interferometers was in large part enabled by using a 10-meter-tall atomic fountain, which allowed for multiple seconds of free-fall. Such a large apparatus cannot be used outside the laboratory for a practical sensor, and many other experiments of fundamental interest would also benefit from a more compact apparatus. The main research problem addressed by this proposal is to develop techniques that allow atom interferometers to achieve sensitivities similar to--or even larger than--those demonstrated in 10-meter-scale apparatus while maintaining a much smaller sensor size (50 cm or smaller sensor height).
Effective start/end date3/25/193/24/22


  • Office of Naval Research (N00014-19-1-2181 P00004)


Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.