Project Details
Description
Accumulation and aggregation of disease-causing proteins is a hallmark of several
neurodegenerative disorders such as Parkinson’s, Alzheimer’s and Huntington’s
disease. One of the main goals of research in neurodegenerative disorders has been to
improve clearance of these accumulated proteins by selectively activating degradation
machinery such as autophagy. Current approaches to modulate autophagy result in
global and non-specific activation of autophagic and other cellular pathways. Using an
example of Huntington’s disease, we reported that selective clearance can be achieved
by posttranslational modification of the mutant htt by acetylation at lysine residue 444
(K444). Increased acetylation at K444 facilitates trafficking of mutant Htt into
autophagosomes, significantly improves clearance of the mutant protein by
macroautophagy and reverses the toxic effects of mutant huntingtin in vitro and in vivo.
These preliminary studies suggest a critical role for acetylation in the control of regulated
clearance of mutant huntingtin. Here we propose to examine the molecular pathways of
such acetylation-mediated clearance of mutant htt. In Aim1 we propose to validate the
role of mutant htt acetylation in vivo by generating a knockin mouse model expressing
acetylation-resistant full-length mutant htt to perform biochemical, neuropathological and
behavioral studies. Aim 2 will examine the interactions of autophagy machinery with
acetylated mutant huntingtin. The cargo recognition process of proteins destined for the
autophagosome is not well understood. We propose to assess interactions of acetyl-htt
with the autophagy machinery, specifically the proteins involved in shuttling protein
cargo to the autophagosome. In Aim 3 we will examine the role of HDAC inhibitors in
promoting clearance of mutant huntingtin. Using cellular models systems, we will
examine the relative contribution of various HDACs to clearance of acetylated mutant
Htt. In summary, the proposed study will examine how cells regulate mutant Htt levels,
a critical risk factor for HD. Identifying the mechanisms that control mutant Htt levels
could lead to novel therapeutic strategies by directly targeting mutant Htt. Understanding
the molecular mechanisms involved in the recognition and selective autophagic
clearance of mutant Htt may facilitate studies of other disease-causing proteins that
accumulate in various neurodegenerative disorders.
Status | Finished |
---|---|
Effective start/end date | 9/1/13 → 3/31/16 |
Funding
- National Institute of Neurological Disorders and Stroke (7R01NS070168-05)
Fingerprint
Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.