Data Science Applications in Communication and Swallowing Disorders

Project: Research project

Project Details

Description

The emergence of electronic medical records, large data registries and readily accessible, protected servers have resulted in an explosion of digital information with high clinical relevance for improving patient management and outcomes. The emergence of big data warehouses that capture standardized information within the scope of clinical practices allow trained scientists to not only engage in traditional hypothesis testing, but to also uncover new hypotheses, refine existing theories and apply new discoveries to health assessments and interventions. Despite the accessibility and potential impact of these data platforms, clinician scientists have traditionally engaged in experiments that incorporate relatively small sample sizes and data from individual laboratories, and have not been trained in big data analytics or in engaging appropriate team scientists who work in this space such as computer scientists, biostatisticians and engineers. The overarching goal of this proposal is to mentor early patient oriented communication and swallowing scientists in big data analytics and to engage and mentor early data science scholars in communication and swallowing research. The PI proposes four primary goals in this K24 renewal proposal: 1. Provide exposure and training in data science methods, including machine learning and artificial intelligence (AI) to a cadre of early stage communication and swallowing scientists by an interdisciplinary, collaborative data science team; 2. Acquaint and engage early career scientists in the field of biostatistics, computer science and engineering to communication and swallowing sciences and respective data sets toward facilitating future interdisciplinary data science teams; 3. Apply novel data science methods to identify patterns of swallowing impairment and severity classification in patient groups known to be at high risk for nutritional and health complications related to dysphagia; and 4. Develop a new area of research in the area of machine learning applications toward improving reliability of physiologic swallowing assessment. The data science theme of the career development and research plan directly align with NIDCD’s Strategic Plan for Data Science which lists as its mission: Storing, managing, standardizing and publishing the vast amounts of data produced by biomedical research. NIDCD recognizes that accessible, well-organized, secure and efficiently operated data resources are critical to modern scientific inquiry…and by maximizing the value of data generated through NIH-funded efforts, the pace of biomedical discoveries and medical breakthroughs for better health outcomes can be accelerated.
StatusFinished
Effective start/end date1/1/2012/31/24

Funding

  • National Institute on Deafness and Other Communication Disorders (5K24DC012801-11)

Fingerprint

Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.