Ink-based additive manufacturing of high-entropy alloys from oxide and hydride powders

Project: Research project

Project Details


A novel additive manufacturing approach will be investigated where inks containing mixed (Co,Cr,Fe,Ni) oxide and (Hf,Nb,Ta,Ti,Zr) hydride particles are extrusion-3D printed into filaments and micro-lattices, which are then reduced to metals, inter-diffused to form high entropy alloys (HEA), and sintered to achieve dense material. A systematic study will be carried out that explores the mechanisms and kinetics of co-reduction or co-decomposition, inter-diffusion and porosity evolution as a function of particle composition, size and packing fraction, reducing species (H2 or C) and presence of space-holders and/or foaming agents to achieve designed intra-filament porosity, throughout the ink synthesis, 3D printing, and subsequent heat treatment. Fibers, struts and micro-trusses will be 3D-printed and subsequently homogenized and sintered while observing the evolution of the pores and intermediate and final phases, using both ex situ metallographic techniques and in situ X-ray diffraction and tomography. Diffusion-based models will be developed and compared to experiments, to describe and predict the sintering and inter-diffusion behaviour during the process. Finite element models will be created to optimize mechanical properties of the micro-lattices, based on strut porosity, phases and geometry.
Effective start/end date8/1/207/31/23


  • National Science Foundation (DMR 2004769)


Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.