Minhea Popa Simons Fellow Application

    Project: Research project

    Project Details

    Description

    General goals: One of the recent themes in my research has been to apply the powerful but
    still somewhat mysterious mixed Hodge module theory developed by Morihiko Saito to concrete
    problems in algebraic geometry. There has been some success already (see for instance [PS2]
    and [PS3] in the past research statement), but this should only be the beginning; my main
    plan for the sabbatical year is to pursue further applications to families of varieties, vanishing
    theorems, and singularities. In the reverse direction, there are constructions and statements
    that only came to the surface due to Saito's theory (like the extension of multiplier ideals that I
    will mention a bit later), but where more standard tools from birational geometry might prove
    to be the key for substantial progress. All of this constitutes what I am mainly planning to
    pursue during my sabbatical year. University of Michigan and Stony Brook are ideal places for
    collaborations that will lead to such developments, as I will explain in more detail below.
    StatusFinished
    Effective start/end date9/1/156/30/16

    Funding

    • Simons Foundation (337849)

    Fingerprint

    Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.