Multiscale Modeling of Myelodysplastic Syndromes

Project: Research project

Project Details

Description

How a blood stem cell develops into a highly specialized cell over several cell divisions is a profound question involving determinism and stochasticity and broadly applicable to human diseases and therapeutics. The shortest-lived blood cell, the granulocyte is absolutely essential for host defense and survival. Its pathophysiological importance is apparent in severe congenital neutropenia (SCN). Life-threatening infections in children with SCN can be avoided through the use of recombinant granulocyte colony-stimulating factor (GCSF). However, SCN often transforms into secondary myelodysplastic syndrome (sMDS) or secondary acute myeloid leukemia (sAML). A great unresolved clinical question is do chronic, pharmacologic doses of GCSF contribute to this transformation. Two major sets of human clinical and experimental data strongly suggest such a linkage, where none had been predicted in mouse models. Firstly, a number of epidemiological clinical trials have demonstrated a strong association between exposure to GCSF and sMDS/sAML. Secondly, mutations in the distal domain of the GCSF Receptor (GCSFR) have been isolated from patients with SCN who developed sMDS/sAML or patients with de novo MDS. Most recently, clonal evolution over ~20 years was documented in a patient with SCN who developed sMDS/sAML. What is particularly striking is that five different mutations arose in the GCSFR gene, some persisted into the AML clone but others were lost during the course. We hypothesize that clonal evolution of an SCN sick stem cell involves perturbations in proximal and distal signaling networks triggered by a mutant GCSFR. Transition from SCN -> sMDS -> sAML most likely also depends on chance, hence the need for a stochastic model. To address these hypotheses through computational modeling and experimental validation, we propose the following specific aims: Aim 1) Develop and evaluate a network model to account for the dynamics of normal and aberrant GCSFR signaling effects and their interactions with mutant ELANE; and Aim 2) Estimate the number, timing, and selective advantage of mutations in granulocyte progenitors at the MDS/AML stages and develop and validate population genetics models to predict risk of transition from SCN->MDS->AML. To accomplish these aims, we have assembled a multidisciplinary team of experts in experimental hematology, flow cytometry, computational biology, and applied probability to develop a systems level analysis of how defective granulopoiesis undergoes malignant transformation. Our goal is to produce a first-generation, multi-scale model for clonal evolution of a sick blood stem cell into an unstable one. Our long-term objectives are to establish patterns of network perturbations in myeloid clonal evolution, predict patient risk for transformation, and design measures to prevent that life-threatening event. One insight emerging from our modeling is that we can predict when transformation to MDS might occur in patients with SCN, which could be used to optimize surveillance and intervention clinically.
StatusFinished
Effective start/end date9/15/153/31/20

Funding

  • National Heart, Lung, and Blood Institute (1R01HL128173-01)

Fingerprint

Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.