Myoferlin in muscle membrane fusion and repair

Project: Research project

Project Details

Description

Mutations in dysferlin cause muscular dystrophy, and the mechanism by which loss of dysferlin leads to muscular dystrophy is a fundamentally different than other forms of muscular dystrophy. Dysferlin is a membrane-associated protein that participates in vesicle trafficking events. In muscle this includes vesicle movement important for plasma membrane repair. Our work has also shown that dysferlin, like other members of the ferlin family, regulates vesicle recycling. We characterized myoferlin and Fer1L5, two highly related proteins to dysferlin to
understand whether these proteins have overlapping function to substitute for dysferlin. These ferlin proteins each have at least six C2 domains, domains important for protein-membrane and protein-protein interactions. We identified that the first C2 domain of dysferlin binds negatively charged phospholipids in a calcium sensitive manner. We subsequently showed that ferlin C2 domains bind directly to carboxy-terminal Eps 15 Homology Domain (EHD) proteins, and that
EHD proteins are required for ferlin intracellular trafficking. EHD proteins can induce tubule formation in vitro and in cells. We will study the interaction between ferlins, EHD, and Bin1 in the genesis of transverse tubule in muscle. We will then examine the mechanisms by which loss of ferlin proteins renders the muscle susceptible to detubulation and the molecular requirements
to restore tubule formation and function. Finally, we will examine recycling events mediated by ferlin proteins. In each step, we will determine the domains of dysferlin, or the related myoferlin and Fer1L5, that mediate these events and assess whether restoration of these functions corrects the underlying pathology in dysferlin-associated muscular dystrophy.
StatusFinished
Effective start/end date1/1/1511/30/17

Funding

  • National Institute of Neurological Disorders and Stroke (5R01NS047726-12)

Fingerprint Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.