Peripheral Auditory System Function in Humans: A Continuum of Maturation and Aging

Project: Research project

Project Details

Description

DESCRIPTION (provided by applicant): The long-term goals of this project are to investigate changes in peripheral auditory function during maturation and aging and to investigate the relationship between these changes and concomitant changes in auditory perception. Specifically, we will: (1) define the time course for maturation and aging of distortion product otoacoustic emission (DPOAE) fine structure and the individual components comprising the distortion product, (2) define the time course for maturation and aging of the medial olivocochlear (MOC) reflex and (3) relate the observed changes in peripheral auditory physiology to changes in speech perception throughout the human lifespan. Past work has established that peripheral immaturities in the auditory system exist postnatally but the time course for maturation has not been defined, nor have the sources of this immaturity been fully specified. Experiments in this project will allow us to complete the maturational time line, examine the sources of immaturity by studying auditory function at multiple levels of the system, and consider how these changes in peripheral function impact communicative ability. The objectives will be achieved by implementing a novel approach that considers change in peripheral auditory function throughout the human lifespan as a continuum, including both maturational and aging processes. The first aim will be addressed by measuring DPOAE fine structure to parse out the relative contribution from two basilar membrane sources: the DPOAE generator region and the DP characteristic frequency (CF) region. State-of-the-art swept-tone methodology will be used in eight age groups ranging from premature infants to elderly adults. There are currently no published studies of DPOAE fine structure in infants although this issue may be highly relevant to questions of cochlear maturation. The second aim will be accomplished by implementing a DPOAE contralateral noise technique to measure MOC reflexes in the same eight age groups at three frequencies. This paradigm will take into account each subject's individual DPOAE fine structure pattern and record the MOC reflex at response peaks (maxima) only, to control for the relationship between DPOAE components during maturation and aging. The third aim will be accomplished by measuring speech perception in noise along with the two previously described metrics of peripheral auditory function, in adolescent through elderly subjects. This experiment will examine the relationship between changes in the periphery and communicative ability and define the extent to which changes in auditory peripheral physiology throughout life can account for changes in perception. This work is relevant to hearing health and clinical practice because it will provide a normative framework for changes in auditory peripheral function from birth through old age. Furthermore, defining DPOAE fine structure in the pediatric population will help specify which cochlear regions are evaluated during routine DPOAE hearing tests and, thus, have the potential to increase accuracy of hearing diagnoses in children. Finally, this project will lead to a clearer understanding of how natural changes in auditory peripheral function contribute to diminishing speech perception in latter years and will help parse out peripheral versus central contributions to this decline. This work will provide a normative framework for natural changes in auditory peripheral function during maturation and aging and will help specify which cochlear regions (and frequencies) are actually a
StatusFinished
Effective start/end date7/1/086/30/13

Funding

  • House Ear Institute (PO# 2124//2 R01DC003552-09A1)
  • National Institute on Deafness and Other Communication Disorders (PO# 2124//2 R01DC003552-09A1)

Fingerprint

Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.