Synaptic Circuit Organization of Motor Cortex

Project: Research project

Project Details

Description

PROJECT SUMMARY

The motor cortex (MC) functions as a major node in the cortical sensorimotor network. The specific circuits and synaptic mechanisms carrying long-range excitatory projections from sensory/association areas to key cell classes in MC such as corticospinal neurons have not yet been identified. Research on cortical sensory processing has previously established the concept of multiple pathways carrying spatial and non-spatial information from primary sensory to higher-order parietal areas, but how these excitatory projections from these areas converge on the cortical motor system remains poorly understood. Here we propose an experimental program designed to elucidate the cell-type specific connectivity underlying long-range corticocortical projections from higher-order sensory/association areas in parietal cortex to identified classes of MC neurons, focusing on corticospinal neurons. We will approach this overall goal using the mouse as our experimental model, retrograde and optogenetic labeling, and targeted opto-physiological recordings of functional synaptic connectivity in select pathways. Our aims are: (1) Determine the synaptic organization of retrosplenial cortex (RSC) projections to MC. (2) Define the input-output organization of RSC as a visuo-motor relay to MC. (3) Determine the synaptic organization of S2 inputs to MC. (4) Define the input-output organization of S2 corticospinal neurons. The proposed research program is highly innovative, we believe, because it brings together powerful new techniques to tackle an important, but experimentally previously inaccessible, issue in the field of sensorimotor research: the specific cellular mechanisms mediating corticocortical communication from higher-order sensory/association areas to motor cortical networks. The proposed research is significant because it will generate foundational knowledge about the macro- and microcircuit basis for feedforward corticocortical excitation of specific classes of MC neurons by higher-order sensory/association areas involved in sensorimotor integration.
StatusFinished
Effective start/end date9/15/137/31/16

Funding

  • National Institute of Neurological Disorders and Stroke (5R01NS061963-08)

Fingerprint

Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.