Project Details
Description
The goal for neuroprostheses is to restore neural function to a condition having the fidelity of a healthy system. However, contemporary neural prostheses, including cochlear implants, are not able to achieve this goal. The devices use electrical current to stimulate the neurons, which spreads in the tissue and consequently does not allow stimulation of focused neuron populations. Therefore, high fidelity stimulation is not possible. In our model system, the cochlea, it has been argued that the performance of cochlear implant users could be increased significantly if more discrete non-overlapping locations of neurons situated along the electrode could be stimulated simultaneously. This might be possible with devices that use focal optical radiation to stimulate neurons. Today we know that infrared neural stimulation (INS) is possible, that stimulation rates can be achieved that allow encoding of acoustic information, that the spatial selectivity in the cochlea is more selective than electrical stimulation, and that single channel stimulation in chronic experiments shows no functional damage of the cochlea over at least six weeks. The developments proposed in this R01 are a logical progression of previous experiments. The aims include the fabrication and testing of hybrid opto-electrical arrays to be surgically inserted into a cat cochlea and showing that each channel of multichannel INS can independently encode information to be perceived by the auditory system. Recordings from the inferior colliculus will be used to construct spatial tuning curves (STCs). Non-overlapping STCs indicate separation of the channels. The stimulation pattern will be changed systematically until an optimum match is achieved between and acoustically evoked response and the response obtained from the coding strategy. Long-term stimulation after chronic implantation of a multi-channel device into a cat cochlea will determine the safety. Strategies such as combined opto-electrical stimulation
Status | Finished |
---|---|
Effective start/end date | 7/15/19 → 6/30/21 |
Funding
- National Institute on Deafness and Other Communication Disorders (1R56DC017492-01A1)
Fingerprint
Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.