TY - JOUR
T1 - α1A-Adrenergic regulation of inhibition in the olfactory bulb
AU - Zimnik, Nathan C.
AU - Treadway, Tyler
AU - Smith, Richard S.
AU - Araneda, Ricardo C.
PY - 2013/4
Y1 - 2013/4
N2 - By regulating inhibition at dendrodendritic synapses between mitral and granule cells (GCs), noradrenergic neurons extending from the brainstem provide an input essential for odour processing in the olfactory bulb (OB). In the accessory OB (AOB), we have recently shown that noradrenaline (NA) increases GABA inhibitory input on to mitral cells (MCs) by exciting GCs. Here, we show that GCs in the main OB (MOB) exhibit a similar response to NA, indicating a common mechanism for noradrenergic regulation of GC→MC inhibition throughout the OB. In GCs of the MOB, NA (10 μm) produced a robust excitatory effect that included a slow afterdepolarization that followed a train of action potentials evoked by a current stimulus. The depolarization and slow afterdepolarization in GCs were blocked by the α1A-adrenergic receptor (AR) selective antagonist WB 4101 (30 nm) and mimicked by the α1A-AR selective agonist A 61603 (1 μm). In recordings from MCs, A 61603 (30 nm-1 μm) produced a sizeable increase in the frequency of spontaneous and miniature IPSCs, an effect completely abolished by the GABAA receptor antagonist gabazine (5 μm). Likewise, activation of β-ARs increased the frequency of spontaneous IPSCs; however, this effect was smaller and confined to the first postnatal weeks. NA enhanced inhibition in MCs across a broad concentration range (0.1-30 μm) and its effects were completely abolished by a mixture of α1- and β-AR antagonists (1 μm prazosin and 10 μm propranolol). Furthermore, the general α2-AR agonist clonidine (10 μm) failed to affect sIPSC frequency. Thus, the NA-mediated increase in GC→MC inhibition in the OB results mostly from activation of the α1A-AR subtype.
AB - By regulating inhibition at dendrodendritic synapses between mitral and granule cells (GCs), noradrenergic neurons extending from the brainstem provide an input essential for odour processing in the olfactory bulb (OB). In the accessory OB (AOB), we have recently shown that noradrenaline (NA) increases GABA inhibitory input on to mitral cells (MCs) by exciting GCs. Here, we show that GCs in the main OB (MOB) exhibit a similar response to NA, indicating a common mechanism for noradrenergic regulation of GC→MC inhibition throughout the OB. In GCs of the MOB, NA (10 μm) produced a robust excitatory effect that included a slow afterdepolarization that followed a train of action potentials evoked by a current stimulus. The depolarization and slow afterdepolarization in GCs were blocked by the α1A-adrenergic receptor (AR) selective antagonist WB 4101 (30 nm) and mimicked by the α1A-AR selective agonist A 61603 (1 μm). In recordings from MCs, A 61603 (30 nm-1 μm) produced a sizeable increase in the frequency of spontaneous and miniature IPSCs, an effect completely abolished by the GABAA receptor antagonist gabazine (5 μm). Likewise, activation of β-ARs increased the frequency of spontaneous IPSCs; however, this effect was smaller and confined to the first postnatal weeks. NA enhanced inhibition in MCs across a broad concentration range (0.1-30 μm) and its effects were completely abolished by a mixture of α1- and β-AR antagonists (1 μm prazosin and 10 μm propranolol). Furthermore, the general α2-AR agonist clonidine (10 μm) failed to affect sIPSC frequency. Thus, the NA-mediated increase in GC→MC inhibition in the OB results mostly from activation of the α1A-AR subtype.
UR - http://www.scopus.com/inward/record.url?scp=84875675704&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84875675704&partnerID=8YFLogxK
U2 - 10.1113/jphysiol.2012.248591
DO - 10.1113/jphysiol.2012.248591
M3 - Article
C2 - 23266935
AN - SCOPUS:84875675704
SN - 0022-3751
VL - 591
SP - 1631
EP - 1643
JO - Journal of physiology
JF - Journal of physiology
IS - 7
ER -