1-D steady state analysis of a two-equation coupled system for determination of tissue temperature in liver during radio frequency ablation

Tingying Peng*, David P. O'Neill, Stephen J. Payne

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

An analytical solution is provided for a two-equation coupled model for determination of liver tissue temperature during radio frequency ablation in the steady state with one-dimension in space. Both analytical analysis and model simulation were conducted to investigate the effects of two crucial system parameters: blood perfusion rate and convective heat transfer coefficient on the tissue temperature field. The quantitative criteria were also derived, under which the two-equation coupled system can be approximated to a conventional single bio-heat equation system such as the Pennes model.

Original languageEnglish (US)
Title of host publicationProceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society
Subtitle of host publicationEngineering the Future of Biomedicine, EMBC 2009
PublisherIEEE Computer Society
Pages3385-3388
Number of pages4
ISBN (Print)9781424432967
DOIs
StatePublished - Jan 1 2009
Event31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009 - Minneapolis, MN, United States
Duration: Sep 2 2009Sep 6 2009

Publication series

NameProceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009

Other

Other31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009
Country/TerritoryUnited States
CityMinneapolis, MN
Period9/2/099/6/09

ASJC Scopus subject areas

  • Cell Biology
  • Developmental Biology
  • Biomedical Engineering
  • General Medicine

Fingerprint

Dive into the research topics of '1-D steady state analysis of a two-equation coupled system for determination of tissue temperature in liver during radio frequency ablation'. Together they form a unique fingerprint.

Cite this