TY - JOUR
T1 - 1,2,3-Triazole-heme interactions in cytochrome P450
T2 - Functionally competent triazole-water-heme complexes
AU - Conner, Kip P.
AU - Vennam, Preethi
AU - Woods, Caleb M.
AU - Krzyaniak, Matthew D
AU - Bowman, Michael K.
AU - Atkins, William M.
PY - 2012/8/14
Y1 - 2012/8/14
N2 - In comparison to imidazole (IMZ) and 1,2,4-triazole (1,2,4-TRZ), the isosteric 1,2,3-triazole (1,2,3-TRZ) is unrepresented among cytochrome P450 (CYP) inhibitors. This is surprising because 1,2,3-TRZs are easily obtained via "click" chemistry. To understand this underrepresentation of 1,2,3-TRZs among CYP inhibitors, thermodynamic and density functional theory computational studies were performed with unsubstituted IMZ, 1,2,4-TRZ, and 1,2,3-TRZ. The results indicate that the lower affinity of 1,2,3-TRZ for the heme iron includes a large unfavorable entropy term likely originating in solvent-1,2,3-TRZ interactions; the difference is not solely due to differences in the enthalpy of heme-ligand interactions. In addition, the 1,2,3-TRZ fragment was incorporated into a well-established CYP3A4 substrate and mechanism-based inactivator, 17-α-ethynylestradiol (17EE), via click chemistry. This derivative, 17-click, yielded optical spectra consistent with low-spin ferric heme iron (type II) in contrast to 17EE, which yields a high-spin complex (type I). Furthermore, the rate of CYP3A4-mediated metabolism of 17-click was comparable to that of 17EE, with a different regioselectivity. Surprisingly, continuous-wave electron paramagnetic resonance (EPR) and HYSCORE EPR spectroscopy indicate that 17-click does not displace water from the sixth axial ligand position of CYP3A4 as expected for a type II ligand. We propose a binding model in which 17-click pendant 1,2,3-TRZ hydrogen bonds with the sixth axial water ligand. The results demonstrate the potential for 1,2,3-TRZ to form metabolically labile water-bridged low-spin heme complexes, consistent with recent evidence that nitrogenous type II ligands of CYPs can be efficiently metabolized. The specific case of [CYP3A4•17-click] highlights the risk of interpreting CYP-ligand complex structure on the basis of optical spectra.
AB - In comparison to imidazole (IMZ) and 1,2,4-triazole (1,2,4-TRZ), the isosteric 1,2,3-triazole (1,2,3-TRZ) is unrepresented among cytochrome P450 (CYP) inhibitors. This is surprising because 1,2,3-TRZs are easily obtained via "click" chemistry. To understand this underrepresentation of 1,2,3-TRZs among CYP inhibitors, thermodynamic and density functional theory computational studies were performed with unsubstituted IMZ, 1,2,4-TRZ, and 1,2,3-TRZ. The results indicate that the lower affinity of 1,2,3-TRZ for the heme iron includes a large unfavorable entropy term likely originating in solvent-1,2,3-TRZ interactions; the difference is not solely due to differences in the enthalpy of heme-ligand interactions. In addition, the 1,2,3-TRZ fragment was incorporated into a well-established CYP3A4 substrate and mechanism-based inactivator, 17-α-ethynylestradiol (17EE), via click chemistry. This derivative, 17-click, yielded optical spectra consistent with low-spin ferric heme iron (type II) in contrast to 17EE, which yields a high-spin complex (type I). Furthermore, the rate of CYP3A4-mediated metabolism of 17-click was comparable to that of 17EE, with a different regioselectivity. Surprisingly, continuous-wave electron paramagnetic resonance (EPR) and HYSCORE EPR spectroscopy indicate that 17-click does not displace water from the sixth axial ligand position of CYP3A4 as expected for a type II ligand. We propose a binding model in which 17-click pendant 1,2,3-TRZ hydrogen bonds with the sixth axial water ligand. The results demonstrate the potential for 1,2,3-TRZ to form metabolically labile water-bridged low-spin heme complexes, consistent with recent evidence that nitrogenous type II ligands of CYPs can be efficiently metabolized. The specific case of [CYP3A4•17-click] highlights the risk of interpreting CYP-ligand complex structure on the basis of optical spectra.
UR - http://www.scopus.com/inward/record.url?scp=84865130391&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84865130391&partnerID=8YFLogxK
U2 - 10.1021/bi300744z
DO - 10.1021/bi300744z
M3 - Article
C2 - 22809252
AN - SCOPUS:84865130391
SN - 0006-2960
VL - 51
SP - 6441
EP - 6457
JO - Biochemistry
JF - Biochemistry
IS - 32
ER -