Abstract
We previously reported that 3-pyrroline and 3-phenyl-3-pyrroline effect a time-dependent inactivation of the copper-containing quinone-dependent amine oxidase from bovine plasma (BPAO) (Lee et al. J. Am. Chem. Soc. 1996, 118, 7241-7242). Quinone cofactor model studies suggested a mechanism involving stoichiometric turnover to a stable pyrrolylated cofactor. Full details of the model studies are now reported along with data on the inhibition of BPAO by a family of 3-aryl-3-pyrrolines (aryl = substituted phenyl, 1-naphthyl, 2-naphthyl), with the 4-methoxy-3-nitrophenyl analogue being the most potent. At the same time, the parent 3-phenyl analogue is a pure substrate for the flavin-dependent mitochondrial monoamine oxidase B from bovine liver. Spectroscopic studies (including resonance Raman) on BPAO inactivated by the 4-methoxy-3-nitrophenyl analogue are consistent with covalent derivatization of the 2,4,5-trihydroxyphenylalanine quinone (TPQ) cofactor. The distinction of a class of compounds acting as an inactivator of one amine oxidase family and a pure substrate of another amine oxidase family represents a unique lead to the development of selective inhibitors of the mammalian copper-containing amine oxidases.
Original language | English (US) |
---|---|
Pages (from-to) | 12135-12143 |
Number of pages | 9 |
Journal | Journal of the American Chemical Society |
Volume | 124 |
Issue number | 41 |
DOIs | |
State | Published - Oct 16 2002 |
ASJC Scopus subject areas
- Catalysis
- Chemistry(all)
- Biochemistry
- Colloid and Surface Chemistry