3D Printing of Supramolecular Polymer Hydrogels with Hierarchical Structure

Nicholas A. Sather, Hiroaki Sai, Ivan R. Sasselli, Kohei Sato, Wei Ji, Christopher V. Synatschke, Ryan T. Zambrotta, John F. Edelbrock, Ryan R. Kohlmeyer, James O. Hardin, John Daniel Berrigan, Michael F. Durstock, Peter Mirau, Samuel I. Stupp*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Liquid crystalline hydrogels are an attractive class of soft materials to direct charge transport, mechanical actuation, and cell migration. When such systems contain supramolecular polymers, it is possible in principle to easily shear align nanoscale structures and create bulk anisotropic properties. However, reproducibly fabricating and patterning aligned supramolecular domains in 3D hydrogels remain a challenge using conventional fabrication techniques. Here, a method is reported for 3D printing of ionically crosslinked liquid crystalline hydrogels from aqueous supramolecular polymer inks. Using a combination of experimental techniques and molecular dynamics simulations, it is found that pH and salt concentration govern intermolecular interactions among the self-assembled structures where lower charge densities on the supramolecular polymers and higher charge screening from the electrolyte result in higher viscosity inks. Enhanced hierarchical interactions among assemblies in high viscosity inks increase the printability and ultimately lead to greater nanoscale alignment in extruded macroscopic filaments when using small nozzle diameters and fast print speeds. The use of this approach is demonstrated to create materials with anisotropic ionic and electronic charge transport as well as scaffolds that trigger the macroscopic alignment of cells due to the synergy of supramolecular self-assembly and additive manufacturing.

Original languageEnglish (US)
JournalSmall
DOIs
StateAccepted/In press - 2021

Keywords

  • 3D printing
  • hierarchical structures
  • hydrogels
  • liquid crystals
  • self-assembly

ASJC Scopus subject areas

  • Biotechnology
  • Biomaterials
  • Chemistry(all)
  • Materials Science(all)

Fingerprint Dive into the research topics of '3D Printing of Supramolecular Polymer Hydrogels with Hierarchical Structure'. Together they form a unique fingerprint.

Cite this