Abstract
The hypoxanthine phosphoribosyltransferase (HPRT) from Trypanosoma cruzi, etiologic agent of Chagas' disease, was cocrystallized with the inosine analogue Formycin B (FmB) and the structure determined to 1.4 Å resolution. This is the highest resolution structure yet reported for a phosphoribosyltransferase (PRT), and the asymmetric unit of the crystal contains a dimer of closely associated, nearly identical subunits. A conserved nonproline cis peptide in one active-site loop exposes the main- chain nitrogen to the enzyme active site, while the adjacent lysine side chain interacts with the other subunit of the dimer, thereby providing a possible mechanism for communication between the subunits and their active sites. The three-dimensional coordinates for the invariant Ser103-Tyr104 dipeptide are reported here for the first time. These are the only highly conserved residues in a second active-site loop, termed the long flexible loop, which is predicted to close over the active site of HPRTs to protect a labile transition state [Eads et al. (1994) Cell 78, 325-334]. This structure represents a major step forward in efforts to design/discover potent selective inhibitors of the HPRT of T. cruzi.
Original language | English (US) |
---|---|
Pages (from-to) | 15066-15075 |
Number of pages | 10 |
Journal | Biochemistry |
Volume | 37 |
Issue number | 43 |
DOIs | |
State | Published - Oct 27 1998 |
ASJC Scopus subject areas
- Biochemistry