A bioprosthetic ovary created using 3D printed microporous scaffolds restores ovarian function in sterilized mice

Monica M. Laronda, Alexandra L. Rutz, Shuo Xiao, Kelly A. Whelan, Francesca E. Duncan, Eric W. Roth, Teresa K. Woodruff*, Ramille N. Shah

*Corresponding author for this work

Research output: Contribution to journalArticle

138 Scopus citations

Abstract

Emerging additive manufacturing techniques enable investigation of the effects of pore geometry on cell behavior and function. Here, we 3D print microporous hydrogel scaffolds to test how varying pore geometry, accomplished by manipulating the advancing angle between printed layers, affects the survival of ovarian follicles. 30° and 60° scaffolds provide corners that surround follicles on multiple sides while 90° scaffolds have an open porosity that limits follicle-scaffold interaction. As the amount of scaffold interaction increases, follicle spreading is limited and survival increases. Follicle-seeded scaffolds become highly vascularized and ovarian function is fully restored when implanted in surgically sterilized mice. Moreover, pups are born through natural mating and thrive through maternal lactation. These findings present an in vivo functional ovarian implant designed with 3D printing, and indicate that scaffold pore architecture is a critical variable in additively manufactured scaffold design for functional tissue engineering.

Original languageEnglish (US)
Article number15261
JournalNature communications
Volume8
DOIs
StatePublished - May 16 2017

    Fingerprint

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Cite this