Abstract
A quantum calculation has been performed using the centrifugal-sudden distorted-wave (CSDW) method for the three-dimensional Cl + DCl → ClD + Cl reaction. Three potential energy surfaces have been employed: two extended London-Eyring-Polanyi-Sato surfaces [denoted Bondi-Connor-Manz-Römelt (BCMR) and Persky-Kornweitz 3 (PK3)] and a scaled and fitted ab initia one (denoted sf-POLCI). Quantities calculated include: cumulative reaction probabilities, integral cross sections, rotational product distributions, and rate coefficients. Differential cross reactions are also reported for the PK3 surface, which are compared with the results from a simple semiclassical optical model (close agreement is found). We also compare the Cl + DCl results with earlier CSDW calculations for Cl + HCl → ClH + Cl. The rotational distributions are strongly perturbed by isotope substitution and are sensitive to variations in the potential surface. In contrast, the H and D rate coefficients for all three surfaces agree with experimental values, except for Cl + DCl on PK3.
Original language | English (US) |
---|---|
Pages (from-to) | 5544-5551 |
Number of pages | 8 |
Journal | The Journal of Chemical Physics |
Volume | 93 |
Issue number | 8 |
DOIs | |
State | Published - Jan 1 1990 |
ASJC Scopus subject areas
- General Physics and Astronomy
- Physical and Theoretical Chemistry