Abstract
Cell-free protein synthesis (CFPS) provides a valuable platform for understanding, using, and expanding the capabilities of the translation apparatus. For example, high-throughput CFPS is helping to address the increasing discrepancy between genome sequence data and their translation products. Here, we report the development of a combined cell-free transcription-translation (Tx/Tl) system from Saccharomyces cerevisiae that is suitable for such efforts. First, we show the ability to enable translation initiation in a cap-independent manner. The performance of various genetic elements was assessed, including 5'-UTR, 3'-UTR, and length of poly(A) tail. A specific vector harboring the 5'-UTR fragment of the Ω sequence from the tobacco mosaic virus and a poly(A) tail of 50 nucleotides led to optimal performance. Second, we developed a simple, two-step polymerase chain reaction (PCR) method for high-throughput production of linear templates for yeast CFPS. This procedure allows all functional elements needed for Tx/Tl to be added to an open-reading frame directly by overlap extension PCR. Our two-step PCR method was successfully applied to three reporter proteins: luciferase, green fluorescence protein, and chloramphenicol acetyl transferase, yielding 7 to 12.5 μg mL-1 active protein after 1.5-h batch reactions. Surprisingly, the linear templates outperformed plasmid DNA by up to 60%. Hence, the presented CFPS method has the potential to rapidly prepare tens to thousands of DNA templates without time-consuming cloning work. Further, it holds promise for fast and convenient optimization of expression constructs, study of internal ribosome entry site, and production of protein libraries for genome-scale studies.
Original language | English (US) |
---|---|
Pages (from-to) | 641-651 |
Number of pages | 11 |
Journal | Biotechnology Journal |
Volume | 9 |
Issue number | 5 |
DOIs | |
State | Published - May 2014 |
Keywords
- Cell-free protein synthesis
- Combined transcription-translation
- In vitro
- Yeast
ASJC Scopus subject areas
- Applied Microbiology and Biotechnology
- Molecular Medicine