A Communication-efficient Algorithm with Linear Convergence for Federated Minimax Learning

Zhenyu Sun, Ermin Wei

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Scopus citations

Abstract

In this paper, we study a large-scale multi-agent minimax optimization problem, which models many interesting applications in statistical learning and game theory, including Generative Adversarial Networks (GANs). The overall objective is a sum of agents' private local objective functions. We focus on the federated setting, where agents can perform local computation and communicate with a central server. Most existing federated minimax algorithms either require communication per iteration or lack performance guarantees with the exception of Local Stochastic Gradient Descent Ascent (SGDA), a multiple-local-update descent ascent algorithm which guarantees convergence under a diminishing stepsize. By analyzing Local SGDA under the ideal condition of no gradient noise, we show that generally it cannot guarantee exact convergence with constant stepsizes and thus suffers from slow rates of convergence. To tackle this issue, we propose FedGDA-GT, an improved Federated (Fed) Gradient Descent Ascent (GDA) method based on Gradient Tracking (GT). When local objectives are Lipschitz smooth and strongly-convex-strongly-concave, we prove that FedGDA-GT converges linearly with a constant stepsize to global ϵ-approximation solution with O(log(1/ϵ)) rounds of communication, which matches the time complexity of centralized GDA method. Then, we analyze the general distributed minimax problem from a statistical aspect, where the overall objective approximates a true population minimax risk by empirical samples. We provide generalization bounds for learning with this objective through Rademacher complexity analysis. Finally, we numerically show that FedGDA-GT outperforms Local SGDA.

Original languageEnglish (US)
Title of host publicationAdvances in Neural Information Processing Systems 35 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022
EditorsS. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, A. Oh
PublisherNeural information processing systems foundation
ISBN (Electronic)9781713871088
StatePublished - 2022
Event36th Conference on Neural Information Processing Systems, NeurIPS 2022 - New Orleans, United States
Duration: Nov 28 2022Dec 9 2022

Publication series

NameAdvances in Neural Information Processing Systems
Volume35
ISSN (Print)1049-5258

Conference

Conference36th Conference on Neural Information Processing Systems, NeurIPS 2022
Country/TerritoryUnited States
CityNew Orleans
Period11/28/2212/9/22

Funding

This work was supported by the NSF NRI 2024774.

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'A Communication-efficient Algorithm with Linear Convergence for Federated Minimax Learning'. Together they form a unique fingerprint.

Cite this