TY - GEN
T1 - A comparative study of uncertainty propagation methods for black-box type functions
AU - Lee, Sang Hoon
AU - Chen, Wei
PY - 2008
Y1 - 2008
N2 - It is an important step in deign under uncertainty to select an appropriate uncertainty propagation (UP) method considering the characteristics of the engineering systems at hand, the required level of UP associated with the probabilistic design scenario, and the required accuracy and efficiency levels. Many uncertainty propagation methods have been developed in various fields, however, there is a lack of good understanding of their relative merits. In this paper, a comparative study on the performances of several UP methods, including a few recent methods that have received growing attention, is performed. The full factorial numerical integration (FFNI), the univariate dimension reduction method (UDR), and the polynomial chaos expansion (PCE) are implemented and applied to several test problems with different settings of the performance nonlinearity, distribution types of input random variables, and the magnitude of input uncertainty. The performances of those methods are compared in moment estimation, tail probability calculation, and the probability density function (PDF) construction. It is found that the FFNI with the moment matching quadrature rule shows good accuracy but the computational cost becomes prohibitive as the number of input random variables increases. The accuracy and efficiency of the UDR method for moment estimations appear to be superior when there is no significant interaction effect in the performance function. Both FFNI and UDR are very robust against the non-normality of input variables. The PCE is implemented in combination with FFNI for coefficients estimation. The PCE method is shown to be a useful approach when a complete PDF description is desired. Inverse Rosenblatt transformation is used to treat non-normal inputs of PCE, however, it is shown that the transformation may result in the degradation of accuracy of PCE. It is also shown that in black-box type of system the performance and convergence of PCE highly depend on the method adopted to estimate its coefficients.
AB - It is an important step in deign under uncertainty to select an appropriate uncertainty propagation (UP) method considering the characteristics of the engineering systems at hand, the required level of UP associated with the probabilistic design scenario, and the required accuracy and efficiency levels. Many uncertainty propagation methods have been developed in various fields, however, there is a lack of good understanding of their relative merits. In this paper, a comparative study on the performances of several UP methods, including a few recent methods that have received growing attention, is performed. The full factorial numerical integration (FFNI), the univariate dimension reduction method (UDR), and the polynomial chaos expansion (PCE) are implemented and applied to several test problems with different settings of the performance nonlinearity, distribution types of input random variables, and the magnitude of input uncertainty. The performances of those methods are compared in moment estimation, tail probability calculation, and the probability density function (PDF) construction. It is found that the FFNI with the moment matching quadrature rule shows good accuracy but the computational cost becomes prohibitive as the number of input random variables increases. The accuracy and efficiency of the UDR method for moment estimations appear to be superior when there is no significant interaction effect in the performance function. Both FFNI and UDR are very robust against the non-normality of input variables. The PCE is implemented in combination with FFNI for coefficients estimation. The PCE method is shown to be a useful approach when a complete PDF description is desired. Inverse Rosenblatt transformation is used to treat non-normal inputs of PCE, however, it is shown that the transformation may result in the degradation of accuracy of PCE. It is also shown that in black-box type of system the performance and convergence of PCE highly depend on the method adopted to estimate its coefficients.
KW - Comparative study
KW - Dimension reduction method
KW - Full factorial numerical integration
KW - Polynomial chaos expansion
KW - Uncertainty propagation
UR - http://www.scopus.com/inward/record.url?scp=44949244058&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=44949244058&partnerID=8YFLogxK
U2 - 10.1115/DETC2007-35533
DO - 10.1115/DETC2007-35533
M3 - Conference contribution
AN - SCOPUS:44949244058
SN - 0791848027
SN - 9780791848029
SN - 0791848078
SN - 9780791848074
T3 - 2007 Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC2007
SP - 1275
EP - 1284
BT - 2007 Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC2007
T2 - 33rd Design Automation Conference, presented at - 2007 ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2007
Y2 - 4 September 2007 through 7 September 2007
ER -