A coupled electromagnetic and thermal model for picosecond and nanometer scale plasmonic lithography process

Ion Hong Chao, Liang Pan, Cheng Sun, Xiang Zhang, Adrienne S. Lavine

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

Plasmonic lithography may become a mainstream nanofabrication technique in the future. Experimental results show that feature size with 22 nm resolution can be achieved by plasmonic lithography. In the experiment, a plasmonic lens is used to focus the laser energy with resolution much higher than the diffraction limit and features are created in the thermally sensitive phase change material layer. The energy transport mechanisms are still not fully understood in the lithography process. In order to predict the lithography resolution and explore the energy transport mechanisms involved in the process, customized electromagnetic wave and heat transfer models are developed in COMSOL. Parametric studies on both operating parameters and material properties are performed for optimizing the lithography process. Parametric studies show that the lithography process can be improved by either reducing the thickness of the phase change material layer or using a material with smaller real refractive index for that layer.

Original languageEnglish (US)
Title of host publicationAdvanced Manufacturing
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Print)9780791856192
DOIs
StatePublished - 2013
EventASME 2013 International Mechanical Engineering Congress and Exposition, IMECE 2013 - San Diego, CA, United States
Duration: Nov 15 2013Nov 21 2013

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
Volume2 B

Other

OtherASME 2013 International Mechanical Engineering Congress and Exposition, IMECE 2013
Country/TerritoryUnited States
CitySan Diego, CA
Period11/15/1311/21/13

ASJC Scopus subject areas

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'A coupled electromagnetic and thermal model for picosecond and nanometer scale plasmonic lithography process'. Together they form a unique fingerprint.

Cite this