TY - JOUR
T1 - A data-driven examination of apathy and depressive symptoms in dementia with independent replication
AU - for the Alzheimer's Disease Neuroimaging Initiative
AU - Vasconcelos Da Silva, Miguel
AU - Melendez-Torres, Gerardo Javier
AU - Ismail, Zahinoor
AU - Testad, Ingelin
AU - Ballard, Clive
AU - Creese, Byron
AU - Weiner, Michael
AU - Aisen, Paul
AU - Petersen, Ronald
AU - Jack, Clifford R.
AU - Jagust, William
AU - Trojanowki, John Q.
AU - Toga, Arthur W.
AU - Beckett, Laurel
AU - Green, Robert C.
AU - Saykin, Andrew J.
AU - Morris, John
AU - Shaw, Leslie M.
AU - Liu, Enchi
AU - Montine, Tom
AU - Thomas, Ronald G.
AU - Donohue, Michael
AU - Walter, Sarah
AU - Gessert, Devon
AU - Sather, Tamie
AU - Jiminez, Gus
AU - Harvey, Danielle
AU - Donohue, Michael
AU - Bernstein, Matthew
AU - Fox, Nick
AU - Thompson, Paul
AU - Schuff, Norbert
AU - DeCArli, Charles
AU - Borowski, Bret
AU - Gunter, Jeff
AU - Senjem, Matt
AU - Vemuri, Prashanthi
AU - Jones, David
AU - Kantarci, Kejal
AU - Ward, Chad
AU - Koeppe, Robert A.
AU - Foster, Norm
AU - Reiman, Eric M.
AU - Chen, Kewei
AU - Mathis, Chet
AU - Landau, Susan
AU - Cairns, Nigel J.
AU - Householder, Erin
AU - Reinwald, Lisa Taylor
AU - Mesulam, Marek Marsel
N1 - Funding Information:
This paper represents independent research partly funded by the NIHR Maudsley Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, or the Department of Health and Social Care. This study was supported by the National Institute for Health and Care Research Exeter Biomedical Research Centre. The views expressed are those of the author(s) and not necessarily those of the NIHR or the Department of Health and Social Care. Data collection and sharing for this project was funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI; National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH‐12‐2‐0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie; Alzheimer's Association; Alzheimer's Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol‐Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann‐La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC; Johnson & Johnson Pharmaceutical Research & Development LLC; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health ( www.fnih.org ). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer's Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.
Funding Information:
This paper represents independent research partly funded by the NIHR Maudsley Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, or the Department of Health and Social Care. This study was supported by the National Institute for Health and Care Research Exeter Biomedical Research Centre. The views expressed are those of the author(s) and not necessarily those of the NIHR or the Department of Health and Social Care. Data collection and sharing for this project was funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI; National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie; Alzheimer's Association; Alzheimer's Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC; Johnson & Johnson Pharmaceutical Research & Development LLC; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer's Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.
Publisher Copyright:
© 2023 The Authors. Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring published by Wiley Periodicals, LLC on behalf of Alzheimer's Association.
PY - 2023/1/1
Y1 - 2023/1/1
N2 - Apathy is one of the most common neuropsychiatric symptoms (NPS) and is associated with poor clinical outcomes. Research that helps define the apathy phenotype is urgently needed, particularly for clinical and biomarker studies. We used latent class analysis (LCA) with two independent cohorts to understand how apathy and depression symptoms co-occur statistically. We further explored the relationship between latent class membership, demographics, and the presence of other NPS. The LCA identified a four-class solution (no symptoms, apathy, depression, and combined apathy/depression), reproducible over both cohorts, providing robust support for an apathy syndrome distinct from depression and confirming that an apathy/depression syndrome exists, supported by the model fit test with the four-class solution scores evidencing better fitting (Bayesian information criterion adjusted and entropy R2). Using a data-driven method, we show distinct and statistically meaningful co-occurrence of apathy and depressive symptoms. There was evidence that these classes have different clinical associations, which may help inform diagnostic categories for research studies and clinical practice. Highlights: We found four classes: no symptoms, apathy, depression and apathy/depression. Apathy conferred a higher probability for agitation. Apathy diagnostic criteria should include accompanying neuropsychiatric symptoms.
AB - Apathy is one of the most common neuropsychiatric symptoms (NPS) and is associated with poor clinical outcomes. Research that helps define the apathy phenotype is urgently needed, particularly for clinical and biomarker studies. We used latent class analysis (LCA) with two independent cohorts to understand how apathy and depression symptoms co-occur statistically. We further explored the relationship between latent class membership, demographics, and the presence of other NPS. The LCA identified a four-class solution (no symptoms, apathy, depression, and combined apathy/depression), reproducible over both cohorts, providing robust support for an apathy syndrome distinct from depression and confirming that an apathy/depression syndrome exists, supported by the model fit test with the four-class solution scores evidencing better fitting (Bayesian information criterion adjusted and entropy R2). Using a data-driven method, we show distinct and statistically meaningful co-occurrence of apathy and depressive symptoms. There was evidence that these classes have different clinical associations, which may help inform diagnostic categories for research studies and clinical practice. Highlights: We found four classes: no symptoms, apathy, depression and apathy/depression. Apathy conferred a higher probability for agitation. Apathy diagnostic criteria should include accompanying neuropsychiatric symptoms.
KW - apathy
KW - dementia
KW - depression
KW - latent class analysis
UR - http://www.scopus.com/inward/record.url?scp=85151426851&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85151426851&partnerID=8YFLogxK
U2 - 10.1002/dad2.12398
DO - 10.1002/dad2.12398
M3 - Article
C2 - 36777092
AN - SCOPUS:85151426851
SN - 2352-8729
VL - 15
JO - Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring
JF - Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring
IS - 1
M1 - e12398
ER -