TY - JOUR
T1 - A discipline-wide investigation of the replicability of Psychology papers over the past two decades
AU - Youyou, Wu
AU - Yang, Yang
AU - Uzzi, Brian
N1 - Publisher Copyright:
Copyright © 2023 the Author(s). Published by PNAS.
PY - 2023/2/7
Y1 - 2023/2/7
N2 - Conjecture about the weak replicability in social sciences has made scholars eager to quantify the scale and scope of replication failure for a discipline. Yet small-scale manual replication methods alone are ill-suited to deal with this big data problem. Here, we conduct a discipline-wide replication census in science. Our sample (N = 14,126 papers) covers nearly all papers published in the six top-tier Psychology journals over the past 20 y. Using a validated machine learning model that estimates a paper’s likelihood of replication, we found evidence that both supports and refutes speculations drawn from a relatively small sample of manual replications. First, we find that a single overall replication rate of Psychology poorly captures the varying degree of replicability among subfields. Second, we find that replication rates are strongly correlated with research methods in all subfields. Experiments replicate at a significantly lower rate than do non-experimental studies. Third, we find that authors’ cumulative publication number and citation impact are positively related to the likelihood of replication, while other proxies of research quality and rigor, such as an author’s university prestige and a paper’s citations, are unrelated to replicability. Finally, contrary to the ideal that media attention should cover replicable research, we find that media attention is positively related to the likelihood of replication failure. Our assessments of the scale and scope of replicability are important next steps toward broadly resolving issues of replicability.
AB - Conjecture about the weak replicability in social sciences has made scholars eager to quantify the scale and scope of replication failure for a discipline. Yet small-scale manual replication methods alone are ill-suited to deal with this big data problem. Here, we conduct a discipline-wide replication census in science. Our sample (N = 14,126 papers) covers nearly all papers published in the six top-tier Psychology journals over the past 20 y. Using a validated machine learning model that estimates a paper’s likelihood of replication, we found evidence that both supports and refutes speculations drawn from a relatively small sample of manual replications. First, we find that a single overall replication rate of Psychology poorly captures the varying degree of replicability among subfields. Second, we find that replication rates are strongly correlated with research methods in all subfields. Experiments replicate at a significantly lower rate than do non-experimental studies. Third, we find that authors’ cumulative publication number and citation impact are positively related to the likelihood of replication, while other proxies of research quality and rigor, such as an author’s university prestige and a paper’s citations, are unrelated to replicability. Finally, contrary to the ideal that media attention should cover replicable research, we find that media attention is positively related to the likelihood of replication failure. Our assessments of the scale and scope of replicability are important next steps toward broadly resolving issues of replicability.
KW - machine learning
KW - psychology
KW - replication
KW - science of science
UR - http://www.scopus.com/inward/record.url?scp=85147170529&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85147170529&partnerID=8YFLogxK
U2 - 10.1073/pnas.2208863120
DO - 10.1073/pnas.2208863120
M3 - Article
C2 - 36716367
AN - SCOPUS:85147170529
SN - 0027-8424
VL - 120
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 6
M1 - e2208863120
ER -