TY - JOUR
T1 - A dynamic spatiotemporal extracellular matrix facilitates epicardial-mediated vertebrate heart regeneration
AU - Mercer, Sarah E.
AU - Odelberg, Shannon J.
AU - Simon, Hans Georg
N1 - Funding Information:
This work was supported by DARPA, Restorative Injury Repair BAA04-12 Addendum B (H.-G. Simon), Searle Funds at the Chicago Community Trust (H.-G. Simon), American Heart Association predoctoral fellowship 11PRE5570021 (S. Mercer), and National Institutes of Health (NIH) Cellular and Molecular Basis of Disease training program T-32 GM008061-27 (S. Mercer). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
PY - 2013/10/15
Y1 - 2013/10/15
N2 - Unlike humans, certain adult vertebrates such as newts and zebrafish possess extraordinary abilities to functionally regenerate lost appendages and injured organs, including cardiac muscle. Here, we present new evidence that a remodeled extracellular matrix (ECM) directs cell activities essential for cardiac muscle regeneration. Comprehensive mining of DNA microarrays and Gene Ontology term enrichment analyses for regenerating newt and zebrafish hearts revealed that distinct ECM components and ECM-modifying proteases are among the most significantly enriched genes in response to local injury. In contrast, data analyses for mammalian cardiac injury models indicated that inflammation and metabolic processes are the most significantly activated gene groups. In the regenerating newt heart, we show dynamic spatial and temporal changes in tenascin-C, hyaluronic acid, and fibronectin ECM distribution as early as 3 days postamputation. Linked to distinct matrix remodeling, we demonstrate a myocardium-wide proliferative response and radial migration of progenitor cells. In particular, we report dramatic upregulation of a regeneration-specific matrix in the epicardium that precedes the accumulation and migration of progenitor cells. For the first time, we show that the regenerative ECM component tenascin-C significantly increases newt cardiomyocyte cell cycle reentry in vitro. Thus, the engineering of nature-tested extracellular matrices may provide new strategic opportunities for the enhancement of regenerative responses in mammals.
AB - Unlike humans, certain adult vertebrates such as newts and zebrafish possess extraordinary abilities to functionally regenerate lost appendages and injured organs, including cardiac muscle. Here, we present new evidence that a remodeled extracellular matrix (ECM) directs cell activities essential for cardiac muscle regeneration. Comprehensive mining of DNA microarrays and Gene Ontology term enrichment analyses for regenerating newt and zebrafish hearts revealed that distinct ECM components and ECM-modifying proteases are among the most significantly enriched genes in response to local injury. In contrast, data analyses for mammalian cardiac injury models indicated that inflammation and metabolic processes are the most significantly activated gene groups. In the regenerating newt heart, we show dynamic spatial and temporal changes in tenascin-C, hyaluronic acid, and fibronectin ECM distribution as early as 3 days postamputation. Linked to distinct matrix remodeling, we demonstrate a myocardium-wide proliferative response and radial migration of progenitor cells. In particular, we report dramatic upregulation of a regeneration-specific matrix in the epicardium that precedes the accumulation and migration of progenitor cells. For the first time, we show that the regenerative ECM component tenascin-C significantly increases newt cardiomyocyte cell cycle reentry in vitro. Thus, the engineering of nature-tested extracellular matrices may provide new strategic opportunities for the enhancement of regenerative responses in mammals.
KW - Extracellular matrix
KW - Heart
KW - Myocardial infarction
KW - Newt
KW - Regeneration
UR - http://www.scopus.com/inward/record.url?scp=84884814030&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84884814030&partnerID=8YFLogxK
U2 - 10.1016/j.ydbio.2013.08.002
DO - 10.1016/j.ydbio.2013.08.002
M3 - Article
C2 - 23939298
AN - SCOPUS:84884814030
SN - 0012-1606
VL - 382
SP - 457
EP - 469
JO - Developmental Biology
JF - Developmental Biology
IS - 2
ER -