A dynamical feedback model for adaptation in the olfactory transduction pathway

Giovanna De Palo, Anna Boccaccio, Andrew Miri, Anna Menini, Claudio Altafini*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

11 Scopus citations


Olfactory transduction exhibits two distinct types of adaptation, which we denote multipulse and step adaptation. In terms of measured transduction current, multipulse adaptation appears as a decrease in the amplitude of the second of two consecutive responses when the olfactory neuron is stimulated with two brief pulses. Step adaptation occurs in response to a sustained steplike stimulation and is characterized by a return to a steady-state current amplitude close to the prestimulus value, after a transient peak. In this article, we formulate a dynamical model of the olfactory transduction pathway, which includes the kinetics of the CNG channels, the concentration of Ca ions flowing through them, and the Ca-complexes responsible for the regulation. Based on this model, a common dynamical explanation for the two types of adaptation is suggested. We show that both forms of adaptation can be well described using different time constants for the kinetics of Ca ions (faster) and the kinetics of the feedback mechanisms (slower). The model is validated on experimental data collected in voltage-clamp conditions using different techniques and animal species.

Original languageEnglish (US)
Pages (from-to)2677-2686
Number of pages10
JournalBiophysical Journal
Issue number12
StatePublished - Jun 20 2012

ASJC Scopus subject areas

  • Biophysics


Dive into the research topics of 'A dynamical feedback model for adaptation in the olfactory transduction pathway'. Together they form a unique fingerprint.

Cite this