Abstract
In this paper, we present a computation technique for the direct numerical simulation of freely moving rigid bodies in fluids. We solve three-dimensional laminar flow problems using a control volume approach. The key feature of this approach is that the computational overhead (relative to a pure fluid solver) to solve for the motion of rigid particle is very small. The formulation is convenient for handling irregular geometries. We present results for the sedimentation of particles of different shapes. Convergence tests are presented to assess the order of accuracy of the numerical scheme. Various test cases are considered and the numerical results are compared with experimental values to validate the code. Due to the ability to perform fast computations, this method has been used for animations and its application to the direct numerical simulation of turbulent particulate flows merits investigation. The technique is not restricted to any constitutive model of the suspending fluid. Hence, it may potentially be used in Large Eddy Simulations (LES) or Reynolds Averaged Navier-Stokes (RANS) type simulations.
Original language | English (US) |
---|---|
Pages (from-to) | 439-457 |
Number of pages | 19 |
Journal | Journal of Computational Physics |
Volume | 205 |
Issue number | 2 |
DOIs | |
State | Published - May 20 2005 |
Keywords
- Animation
- Direct numerical simulation
- Distributed Lagrange multiplier
- Rigid particulate flow
- Turbulent flows
ASJC Scopus subject areas
- Numerical Analysis
- Modeling and Simulation
- Physics and Astronomy (miscellaneous)
- Physics and Astronomy(all)
- Computer Science Applications
- Computational Mathematics
- Applied Mathematics