TY - JOUR
T1 - A function for keratins and a common thread among different types of epidermolysis bullosa simplex diseases
AU - Coulombe, Pierre A.
AU - Hutton, M. Elizabeth
AU - Vassar, Robert
AU - Fuchs, Elaine
PY - 1991/12
Y1 - 1991/12
N2 - Previously we demonstrated that transgenic mice expressing a mutant keratin in the basal layer of their stratified squamous epithelia exhibited a phenotype bearing resemblance to a subclass (Dowling Meara) of a heterogeneous group of human skin disorders known as epidermolysis bullosa simplex (EBS) (Vassar, R., P. A. Coulombe, L. Degenstein, K. Albers, E. Fuchs. 1991. Cell. 64:365-380.). The extent to which subtypes of EBS diseases might be genetically related is unknown, although they all exhibit skin blistering as a consequence of basal cell cytolysis. We have now examined transgenic mice expressing a range of keratin mutants which perturb keratin filament assembly to varying degrees. We have generated phenotypes which include most subtypes of EBS, demonstrating for the first time that at least in mice, these diseases can be generated by different mutations within a single gene. A strong correlation existed between the severity of the disease and the extent to which the keratin filament network was disrupted, implicating perturbations in keratin networks as an essential component of these diseases. Some keratin mutants elicited subtle perturbations, with no signs of the tonofilament clumping typical of Dowling-Meara EBS and our previous transgenic mice. Importantly, basal cell cytolysis still occurred, thereby uncoupling cytolysis from the generation of large, insoluble cytoplasmic protein aggregates. Moreover, cell rupture occurred in a narrowly defined subnuclear zone, and seemed to involve three factors: (a) filament perturbation, (b) the columnar shape of the basal cell, and (c) physical trauma. This work provides the best evidence to date for a structural function of a cytoplasmic intermediate filament network, namely to impart mechanical integrity to the cell in the context of its tissue.
AB - Previously we demonstrated that transgenic mice expressing a mutant keratin in the basal layer of their stratified squamous epithelia exhibited a phenotype bearing resemblance to a subclass (Dowling Meara) of a heterogeneous group of human skin disorders known as epidermolysis bullosa simplex (EBS) (Vassar, R., P. A. Coulombe, L. Degenstein, K. Albers, E. Fuchs. 1991. Cell. 64:365-380.). The extent to which subtypes of EBS diseases might be genetically related is unknown, although they all exhibit skin blistering as a consequence of basal cell cytolysis. We have now examined transgenic mice expressing a range of keratin mutants which perturb keratin filament assembly to varying degrees. We have generated phenotypes which include most subtypes of EBS, demonstrating for the first time that at least in mice, these diseases can be generated by different mutations within a single gene. A strong correlation existed between the severity of the disease and the extent to which the keratin filament network was disrupted, implicating perturbations in keratin networks as an essential component of these diseases. Some keratin mutants elicited subtle perturbations, with no signs of the tonofilament clumping typical of Dowling-Meara EBS and our previous transgenic mice. Importantly, basal cell cytolysis still occurred, thereby uncoupling cytolysis from the generation of large, insoluble cytoplasmic protein aggregates. Moreover, cell rupture occurred in a narrowly defined subnuclear zone, and seemed to involve three factors: (a) filament perturbation, (b) the columnar shape of the basal cell, and (c) physical trauma. This work provides the best evidence to date for a structural function of a cytoplasmic intermediate filament network, namely to impart mechanical integrity to the cell in the context of its tissue.
UR - http://www.scopus.com/inward/record.url?scp=0026329610&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0026329610&partnerID=8YFLogxK
M3 - Article
C2 - 1721910
AN - SCOPUS:0026329610
SN - 0021-9525
VL - 115
SP - 1661
EP - 1674
JO - Journal of Cell Biology
JF - Journal of Cell Biology
IS - 6
ER -