TY - JOUR
T1 - A gadolinium chelate for detection of β-glucuronidase
T2 - A self-immolative approach
AU - Duimstra, Joseph A.
AU - Femia, Frank J.
AU - Meade, Thomas J.
PY - 2005/9/21
Y1 - 2005/9/21
N2 - New classes of physiologically responsive magnetic resonance (MR) contrast agents are being developed that are activated by enzymes, secondary messengers, pH, and temperature. To this end, we have prepared a new class of enzyme-activated MR contrast agents using a self-immolative mechanism and investigated the properties of these agents using novel in vitro assays. We have synthesized in nine steps a Gd(III) agent 1 that is activated by the oncologically significant β-glucuronidase. 1 consists of Gd(III)DO3A (DO3A = 1,4,7-tricarboxymethylene-1,4,7,10-tetraazacyclododecane) bearing a pendant β-glucuronic acid moiety connected by a self-immolative linker to the macrocycle. LC-MS analysis reveals that 1 is enzymatically processed as predicted by bovine liver β-glucuronidase, generating 2-aminoethyl-GdDO3A, 2. Compound 2 was prepared independently in a four-step synthetic procedure. Complex 1 displays a decrease in relaxivity upon titration with bicarbonate anion. The relaxivity increases when 1 is converted to 2 in a buffer mimicking in vivo anion concentrations (Parker, D. In Crown Compounds: Towards Future Applications; Cooper, S. R., Ed.; VCH: New York, 1992; pp 51-67) by 17%, while the relaxivity decreases by 27% for the same experiment in human blood serum. Hydrolytic kinetics catalyzed by bovine liver β-glucuronidase at interstitial pH = 7.4 fit the Michaelis-Menten model with kcat/K m = 74.9 ± 10.9 M-1 s-1. Monitoring of bulk water proton T1 during incubation with enzyme shows an increase in T1 that mirrors results obtained through the relaxivity measurements of compounds 1 and 2.
AB - New classes of physiologically responsive magnetic resonance (MR) contrast agents are being developed that are activated by enzymes, secondary messengers, pH, and temperature. To this end, we have prepared a new class of enzyme-activated MR contrast agents using a self-immolative mechanism and investigated the properties of these agents using novel in vitro assays. We have synthesized in nine steps a Gd(III) agent 1 that is activated by the oncologically significant β-glucuronidase. 1 consists of Gd(III)DO3A (DO3A = 1,4,7-tricarboxymethylene-1,4,7,10-tetraazacyclododecane) bearing a pendant β-glucuronic acid moiety connected by a self-immolative linker to the macrocycle. LC-MS analysis reveals that 1 is enzymatically processed as predicted by bovine liver β-glucuronidase, generating 2-aminoethyl-GdDO3A, 2. Compound 2 was prepared independently in a four-step synthetic procedure. Complex 1 displays a decrease in relaxivity upon titration with bicarbonate anion. The relaxivity increases when 1 is converted to 2 in a buffer mimicking in vivo anion concentrations (Parker, D. In Crown Compounds: Towards Future Applications; Cooper, S. R., Ed.; VCH: New York, 1992; pp 51-67) by 17%, while the relaxivity decreases by 27% for the same experiment in human blood serum. Hydrolytic kinetics catalyzed by bovine liver β-glucuronidase at interstitial pH = 7.4 fit the Michaelis-Menten model with kcat/K m = 74.9 ± 10.9 M-1 s-1. Monitoring of bulk water proton T1 during incubation with enzyme shows an increase in T1 that mirrors results obtained through the relaxivity measurements of compounds 1 and 2.
UR - http://www.scopus.com/inward/record.url?scp=25144512977&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=25144512977&partnerID=8YFLogxK
U2 - 10.1021/ja042162r
DO - 10.1021/ja042162r
M3 - Article
C2 - 16159278
AN - SCOPUS:25144512977
SN - 0002-7863
VL - 127
SP - 12847
EP - 12855
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 37
ER -