A generalization of Kátai's orthogonality criterion with applications

Vitaly Bergelson, J. Kułaga-Przymus, Mariusz Lemańczyk, Florian K. Richter

Research output: Contribution to journalArticlepeer-review

Abstract

We study properties of arithmetic sets coming from multiplicative number theory and obtain applications in the theory of uniform distribution and ergodic theory. Our main theorem is a generalization of Kátai's orthogonality criterion. Here is a special case of this theorem: Theorem. Let a: N → C be a bounded sequence satisfying (Theorem presented) Then for any multiplicative function f and any z ∈ C the indicator function of the level set E = -n ∈ N : F(n) = z} satisfies (Theorem presented) With the help of this theorem one can show that if E = -n1 < n2 < . . .} is a level set of a multiplicative function having positive upper density, then for a large class of sufficiently smooth functions h : (0,∞) → R the sequence (h(nj))j2N is uniformly distributed mod 1. This class of functions h(t) includes: All polynomials p(t) = aktk + . . . + a1t + a0 such that at least one of the coefficients a1, a2, . . ., ak is irrational, tc for any c > 0 with c/∈ N, logr(t) for any r > 2, log(Γ(t)), t log(t), and t log t . The uniform distribution results, in turn, allow us to obtain new examples of ergodic sequences, i.e. sequences along which the ergodic theorem holds.

MSC Codes 11N99, 11J71, 11K06, 11K65, 28D05, 37A05, 37A45, 47A35

Original languageEnglish (US)
JournalUnknown Journal
StatePublished - May 20 2017
Externally publishedYes

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'A generalization of Kátai's orthogonality criterion with applications'. Together they form a unique fingerprint.

Cite this