TY - JOUR
T1 - A generalization of Kátai's orthogonality criterion with applications
AU - Bergelson, Vitaly
AU - Kułaga-Przymus, J.
AU - Lemańczyk, Mariusz
AU - Richter, Florian K.
N1 - Publisher Copyright:
Copyright © 2017, The Authors. All rights reserved.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2017/5/20
Y1 - 2017/5/20
N2 - We study properties of arithmetic sets coming from multiplicative number theory and obtain applications in the theory of uniform distribution and ergodic theory. Our main theorem is a generalization of Kátai's orthogonality criterion. Here is a special case of this theorem: Theorem. Let a: N → C be a bounded sequence satisfying (Theorem presented) Then for any multiplicative function f and any z ∈ C the indicator function of the level set E = -n ∈ N : F(n) = z} satisfies (Theorem presented) With the help of this theorem one can show that if E = -n1 < n2 < . . .} is a level set of a multiplicative function having positive upper density, then for a large class of sufficiently smooth functions h : (0,∞) → R the sequence (h(nj))j2N is uniformly distributed mod 1. This class of functions h(t) includes: All polynomials p(t) = aktk + . . . + a1t + a0 such that at least one of the coefficients a1, a2, . . ., ak is irrational, tc for any c > 0 with c/∈ N, logr(t) for any r > 2, log(Γ(t)), t log(t), and t log t . The uniform distribution results, in turn, allow us to obtain new examples of ergodic sequences, i.e. sequences along which the ergodic theorem holds.MSC Codes 11N99, 11J71, 11K06, 11K65, 28D05, 37A05, 37A45, 47A35
AB - We study properties of arithmetic sets coming from multiplicative number theory and obtain applications in the theory of uniform distribution and ergodic theory. Our main theorem is a generalization of Kátai's orthogonality criterion. Here is a special case of this theorem: Theorem. Let a: N → C be a bounded sequence satisfying (Theorem presented) Then for any multiplicative function f and any z ∈ C the indicator function of the level set E = -n ∈ N : F(n) = z} satisfies (Theorem presented) With the help of this theorem one can show that if E = -n1 < n2 < . . .} is a level set of a multiplicative function having positive upper density, then for a large class of sufficiently smooth functions h : (0,∞) → R the sequence (h(nj))j2N is uniformly distributed mod 1. This class of functions h(t) includes: All polynomials p(t) = aktk + . . . + a1t + a0 such that at least one of the coefficients a1, a2, . . ., ak is irrational, tc for any c > 0 with c/∈ N, logr(t) for any r > 2, log(Γ(t)), t log(t), and t log t . The uniform distribution results, in turn, allow us to obtain new examples of ergodic sequences, i.e. sequences along which the ergodic theorem holds.MSC Codes 11N99, 11J71, 11K06, 11K65, 28D05, 37A05, 37A45, 47A35
UR - http://www.scopus.com/inward/record.url?scp=85094354704&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85094354704&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:85094354704
JO - Free Radical Biology and Medicine
JF - Free Radical Biology and Medicine
SN - 0891-5849
ER -