Abstract
Compressive sensing aims to recover a high-dimensional sparse signal from a relatively small number of measurements. In this paper, a novel design of the measurement matrix is proposed. The design is inspired by the construction of generalized low-density parity-check codes, where the capacity-achieving point-to-point codes serve as subcodes to robustly estimate the signal support. In the case that each entry of the n-dimensional ft-sparse signal lies in a known discrete alphabet, the proposed scheme requires only O(k log n) measurements and arithmetic operations. In the case of arbitrary, possibly continuous alphabet, an error propagation graph is proposed to characterize the residual estimation error. With O(k log2 n) measurements and computational complexity, the reconstruction error can be made arbitrarily small with high probability.
Original language | English (US) |
---|---|
Title of host publication | 2016 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2016 - Proceedings |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 4623-4627 |
Number of pages | 5 |
ISBN (Electronic) | 9781479999880 |
DOIs | |
State | Published - May 18 2016 |
Event | 41st IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2016 - Shanghai, China Duration: Mar 20 2016 → Mar 25 2016 |
Publication series
Name | ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings |
---|---|
Volume | 2016-May |
ISSN (Print) | 1520-6149 |
Other
Other | 41st IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2016 |
---|---|
Country/Territory | China |
City | Shanghai |
Period | 3/20/16 → 3/25/16 |
Funding
This work was supported in part by the National Science Foundation under Grant No. CCF-1423040.
ASJC Scopus subject areas
- Software
- Signal Processing
- Electrical and Electronic Engineering