A high-temperature, high-efficiency solar thermoelectric generator prototype

M. L. Olsen, E. L. Warren, P. A. Parilla, E. S. Toberer, C. E. Kennedy, G. J. Snyder, S. A. Firdosy, B. Nesmith, A. Zakutayev, A. Goodrich, C. S. Turchi, J. Netter, M. H. Gray, P. F. Ndione, R. Tirawat, L. L. Baranowski, A. Gray, D. S. Ginley

Research output: Contribution to journalConference article

31 Citations (Scopus)

Abstract

Solar thermoelectric generators (STEGs) have the potential to convert solar energy at greater than 15% efficiency. This project investigates the system design, the necessary thermoelectric and optical technologies, and the economic feasibility of the STEG approach. A STEG is a solid-state heat engine that converts sunlight directly into DC electricity through the thermoelectric effect. STEGs consist of three subsystems: the solar absorber, the thermoelectric generator (TEG), and the heat management system (insulation, heat exchanger, vacuum enclosure, etc.). This project will integrate several state-of-the-art technologies to achieve high efficiency, including next-generation materials for TEGs, high-temperature solar-selective absorbers, and thermal cavities. We will test STEGs at NREL's high flux solar furnace (HFSF) and perform analysis of parasitic losses and lifetime analysis to optimize prototype operation. Equally important for this technology is the development of a cost model to determine the economic competitiveness and possible application niches for STEG technologies. We report on first-order economic analysis to identify the most promising pathways for advancing the technology.

Original languageEnglish (US)
Pages (from-to)1460-1469
Number of pages10
JournalEnergy Procedia
Volume49
DOIs
StatePublished - Jan 1 2013
EventInternational Conference on Solar Power and Chemical Energy Systems, SolarPACES 2013 - Las Vegas, NV, United States
Duration: Sep 17 2013Sep 20 2013

Fingerprint

Temperature
Solar absorbers
Solar furnaces
Thermoelectricity
Heat engines
Economics
Economic analysis
Enclosures
Solar energy
Heat exchangers
Insulation
Electricity
Systems analysis
Vacuum
Fluxes
Costs
Hot Temperature

Keywords

  • Solar cavity-receivers
  • Solar thermoelectric generators
  • Solar-selective absorbers
  • Solid-state heat engines

ASJC Scopus subject areas

  • Energy(all)

Cite this

Olsen, M. L., Warren, E. L., Parilla, P. A., Toberer, E. S., Kennedy, C. E., Snyder, G. J., ... Ginley, D. S. (2013). A high-temperature, high-efficiency solar thermoelectric generator prototype. Energy Procedia, 49, 1460-1469. https://doi.org/10.1016/j.egypro.2014.03.155
Olsen, M. L. ; Warren, E. L. ; Parilla, P. A. ; Toberer, E. S. ; Kennedy, C. E. ; Snyder, G. J. ; Firdosy, S. A. ; Nesmith, B. ; Zakutayev, A. ; Goodrich, A. ; Turchi, C. S. ; Netter, J. ; Gray, M. H. ; Ndione, P. F. ; Tirawat, R. ; Baranowski, L. L. ; Gray, A. ; Ginley, D. S. / A high-temperature, high-efficiency solar thermoelectric generator prototype. In: Energy Procedia. 2013 ; Vol. 49. pp. 1460-1469.
@article{64adc60e184c4e8ea0f685d60e2648f0,
title = "A high-temperature, high-efficiency solar thermoelectric generator prototype",
abstract = "Solar thermoelectric generators (STEGs) have the potential to convert solar energy at greater than 15{\%} efficiency. This project investigates the system design, the necessary thermoelectric and optical technologies, and the economic feasibility of the STEG approach. A STEG is a solid-state heat engine that converts sunlight directly into DC electricity through the thermoelectric effect. STEGs consist of three subsystems: the solar absorber, the thermoelectric generator (TEG), and the heat management system (insulation, heat exchanger, vacuum enclosure, etc.). This project will integrate several state-of-the-art technologies to achieve high efficiency, including next-generation materials for TEGs, high-temperature solar-selective absorbers, and thermal cavities. We will test STEGs at NREL's high flux solar furnace (HFSF) and perform analysis of parasitic losses and lifetime analysis to optimize prototype operation. Equally important for this technology is the development of a cost model to determine the economic competitiveness and possible application niches for STEG technologies. We report on first-order economic analysis to identify the most promising pathways for advancing the technology.",
keywords = "Solar cavity-receivers, Solar thermoelectric generators, Solar-selective absorbers, Solid-state heat engines",
author = "Olsen, {M. L.} and Warren, {E. L.} and Parilla, {P. A.} and Toberer, {E. S.} and Kennedy, {C. E.} and Snyder, {G. J.} and Firdosy, {S. A.} and B. Nesmith and A. Zakutayev and A. Goodrich and Turchi, {C. S.} and J. Netter and Gray, {M. H.} and Ndione, {P. F.} and R. Tirawat and Baranowski, {L. L.} and A. Gray and Ginley, {D. S.}",
year = "2013",
month = "1",
day = "1",
doi = "10.1016/j.egypro.2014.03.155",
language = "English (US)",
volume = "49",
pages = "1460--1469",
journal = "Energy Procedia",
issn = "1876-6102",
publisher = "Elsevier BV",

}

Olsen, ML, Warren, EL, Parilla, PA, Toberer, ES, Kennedy, CE, Snyder, GJ, Firdosy, SA, Nesmith, B, Zakutayev, A, Goodrich, A, Turchi, CS, Netter, J, Gray, MH, Ndione, PF, Tirawat, R, Baranowski, LL, Gray, A & Ginley, DS 2013, 'A high-temperature, high-efficiency solar thermoelectric generator prototype', Energy Procedia, vol. 49, pp. 1460-1469. https://doi.org/10.1016/j.egypro.2014.03.155

A high-temperature, high-efficiency solar thermoelectric generator prototype. / Olsen, M. L.; Warren, E. L.; Parilla, P. A.; Toberer, E. S.; Kennedy, C. E.; Snyder, G. J.; Firdosy, S. A.; Nesmith, B.; Zakutayev, A.; Goodrich, A.; Turchi, C. S.; Netter, J.; Gray, M. H.; Ndione, P. F.; Tirawat, R.; Baranowski, L. L.; Gray, A.; Ginley, D. S.

In: Energy Procedia, Vol. 49, 01.01.2013, p. 1460-1469.

Research output: Contribution to journalConference article

TY - JOUR

T1 - A high-temperature, high-efficiency solar thermoelectric generator prototype

AU - Olsen, M. L.

AU - Warren, E. L.

AU - Parilla, P. A.

AU - Toberer, E. S.

AU - Kennedy, C. E.

AU - Snyder, G. J.

AU - Firdosy, S. A.

AU - Nesmith, B.

AU - Zakutayev, A.

AU - Goodrich, A.

AU - Turchi, C. S.

AU - Netter, J.

AU - Gray, M. H.

AU - Ndione, P. F.

AU - Tirawat, R.

AU - Baranowski, L. L.

AU - Gray, A.

AU - Ginley, D. S.

PY - 2013/1/1

Y1 - 2013/1/1

N2 - Solar thermoelectric generators (STEGs) have the potential to convert solar energy at greater than 15% efficiency. This project investigates the system design, the necessary thermoelectric and optical technologies, and the economic feasibility of the STEG approach. A STEG is a solid-state heat engine that converts sunlight directly into DC electricity through the thermoelectric effect. STEGs consist of three subsystems: the solar absorber, the thermoelectric generator (TEG), and the heat management system (insulation, heat exchanger, vacuum enclosure, etc.). This project will integrate several state-of-the-art technologies to achieve high efficiency, including next-generation materials for TEGs, high-temperature solar-selective absorbers, and thermal cavities. We will test STEGs at NREL's high flux solar furnace (HFSF) and perform analysis of parasitic losses and lifetime analysis to optimize prototype operation. Equally important for this technology is the development of a cost model to determine the economic competitiveness and possible application niches for STEG technologies. We report on first-order economic analysis to identify the most promising pathways for advancing the technology.

AB - Solar thermoelectric generators (STEGs) have the potential to convert solar energy at greater than 15% efficiency. This project investigates the system design, the necessary thermoelectric and optical technologies, and the economic feasibility of the STEG approach. A STEG is a solid-state heat engine that converts sunlight directly into DC electricity through the thermoelectric effect. STEGs consist of three subsystems: the solar absorber, the thermoelectric generator (TEG), and the heat management system (insulation, heat exchanger, vacuum enclosure, etc.). This project will integrate several state-of-the-art technologies to achieve high efficiency, including next-generation materials for TEGs, high-temperature solar-selective absorbers, and thermal cavities. We will test STEGs at NREL's high flux solar furnace (HFSF) and perform analysis of parasitic losses and lifetime analysis to optimize prototype operation. Equally important for this technology is the development of a cost model to determine the economic competitiveness and possible application niches for STEG technologies. We report on first-order economic analysis to identify the most promising pathways for advancing the technology.

KW - Solar cavity-receivers

KW - Solar thermoelectric generators

KW - Solar-selective absorbers

KW - Solid-state heat engines

UR - http://www.scopus.com/inward/record.url?scp=84902253250&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84902253250&partnerID=8YFLogxK

U2 - 10.1016/j.egypro.2014.03.155

DO - 10.1016/j.egypro.2014.03.155

M3 - Conference article

AN - SCOPUS:84902253250

VL - 49

SP - 1460

EP - 1469

JO - Energy Procedia

JF - Energy Procedia

SN - 1876-6102

ER -