A local existence result for Poincaré-Einstein metrics

Matthew J. Gursky*, Gábor Székelyhidi

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

Given a closed Riemannian manifold (M,gM) of dimension n≥3, we prove the existence of a conformally compact Einstein metric g+ defined on a collar neighborhood M×(0,1] whose conformal infinity is [gM].

Original languageEnglish (US)
Article number106912
JournalAdvances in Mathematics
Volume361
DOIs
StatePublished - Feb 12 2020

Keywords

  • Conformally compact
  • Einstein metric
  • Local existence

ASJC Scopus subject areas

  • General Mathematics

Fingerprint

Dive into the research topics of 'A local existence result for Poincaré-Einstein metrics'. Together they form a unique fingerprint.

Cite this