A map of the cis-regulatory sequences in the mouse genome

Yin Shen, Feng Yue, David F. Mc Cleary, Zhen Ye, Lee Edsall, Samantha Kuan, Ulrich Wagner, Jesse Dixon, Leonard Lee, Bing Ren, Victor V. Lobanenkov

Research output: Contribution to journalArticlepeer-review

1030 Scopus citations


The laboratory mouse is the most widely used mammalian model organism in biomedical research. The 2.6 × 109 bases of the mouse genome possess a high degree of conservation with the human genome1, so a thorough annotation of the mouse genome will be of significant value to understanding the function of the human genome. So far, most of the functional sequences in the mouse genome have yet to be found, and the cis-regulatory sequences in particular are still poorly annotated. Comparative genomics has been a powerful tool for the discovery of these sequences2, but on its own it cannot resolve theirtemporal and spatial functions. Recently, ChIP-Seq has been developed to identify cis-regulatory elements in the genomes of several organisms including humans, Drosophila melanogaster and Caenorhabditis elegans3-5. Here we apply the same experimental approach to a diverse set of 19 tissues and cell types in the mouse to produce a map of nearly 300, 000 murine cis-regulatory sequences. The annotated sequences add up to 11% of the mouse genome, and include more than 70% of conserved non-coding sequences.Wedefine tissue-specific enhancers and identify potential transcription factors regulating gene expression in each tissue or cell type. Finally, we show that much of the mousegenomeisorganizedintodomainsofcoordinatelyregulatedenhancers and promoters. Our results provide a resource for the annotation of functional elementsin the mammalian genome and for the study of mechanisms regulating tissue-specific gene expression.

Original languageEnglish (US)
Pages (from-to)116-120
Number of pages5
Issue number7409
StatePublished - Aug 2 2012

ASJC Scopus subject areas

  • General


Dive into the research topics of 'A map of the cis-regulatory sequences in the mouse genome'. Together they form a unique fingerprint.

Cite this