A mesoporous anisotropic n-type Bi 2 Te 3 monolith with low thermal conductivity as an efficient thermoelectric material

Yichi Zhang, Tristan Day, Matthew L. Snedaker, Heng Wang, Stephan Krämer, Christina S. Birkel, Xiulei Ji, Deyu Liu, G. Jeffrey Snyder, Galen D. Stucky*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

54 Scopus citations


A mesoporous Bi 2 Te 3 monolith with ≈20% porosity is fabricated by hot-pressing mesoporous powders. The mesostructures are able to transport carriers and scatter phonons efficiently. The reduction (≈60%) of the thermal conductivity is sufficient to compensate for the loss of electrical conductivity perpendicular to the direction of applied pressure, leading to an enhanced zT of 0.7, highest among all reported self-doped, n-type Bi 2 Te 3 at similar temperatures.

Original languageEnglish (US)
Pages (from-to)5065-5070
Number of pages6
JournalAdvanced Materials
Issue number37
StatePublished - Sep 25 2012


  • anisotropic materials
  • bismuth telluride
  • mesoporous materials
  • thermal conductivity
  • thermoelectric materials

ASJC Scopus subject areas

  • Materials Science(all)
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'A mesoporous anisotropic n-type Bi <sub>2</sub> Te <sub>3</sub> monolith with low thermal conductivity as an efficient thermoelectric material'. Together they form a unique fingerprint.

Cite this