TY - JOUR
T1 - A method for detection of SARS-CoV-2 RNA in healthy human stool
T2 - a validation study
AU - Coryell, Michael P.
AU - Iakiviak, Mikhail
AU - Pereira, Nicole
AU - Murugkar, Pallavi P.
AU - Rippe, Jason
AU - Williams, David B.
AU - Heald-Sargent, Taylor
AU - Sanchez-Pinto, L. Nelson
AU - Chavez, Jairo
AU - Hastie, Jessica L.
AU - Sava, Rosa L.
AU - Lien, Christopher Z.
AU - Wang, Tony T.
AU - Muller, William J.
AU - Fischbach, Michael A.
AU - Carlson, Paul E.
N1 - Publisher Copyright:
© 2021 Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license
PY - 2021/6
Y1 - 2021/6
N2 - Background: Faecal shedding of SARS-CoV-2 has raised concerns about transmission through faecal microbiota transplantation procedures. Validation parameters of authorised tests for SARS-CoV-2 RNA detection in respiratory samples are described in product labelling, whereas the published methods for SARS-CoV-2 detection from faecal samples have not permitted a robust description of the assay parameters. We aimed to develop and validate a test specifically for detection of SARS-CoV-2 in human stool. Methods: In this validation study, we evaluated performance characteristics of a reverse transcriptase real-time PCR (RT-rtPCR) test for detection of SARS-CoV-2 in human stool specimens by spiking stool with inactivated SARS-CoV-2 material. A modified version of the US Centers for Disease Control and Prevention RT-rtPCR SARS-CoV-2 test was used for detection of viral RNA. Analytical sensitivity was evaluated in freshly spiked stool by testing two-fold dilutions in replicates of 20. Masked samples were tested by a second laboratory to evaluate interlaboratory reproducibility. Short-term (7-day) stability of viral RNA in stool samples was assessed with four different stool storage buffers (phosphate-buffered saline, Cary-Blair medium, Stool Transport and Recovery [STAR] buffer, and DNA/RNA Shield) kept at −80°C, 4°C, and ambient temperature (approximately 21°C). We also tested clinical stool and anal swab specimens from patients who were SARS-CoV-2 positive by nasopharyngeal testing. Findings: The lower limit of detection of the assay was found to be 3000 viral RNA copies per g of original stool sample, with 100% detection across 20 replicates assessed at this concentration. Analytical sensitivity was diminished by approximately two times after a single freeze-thaw cycle at −80°C. At 100 times the limit of detection, spiked samples were generally stable in all four stool storage buffers tested for up to 7 days, with maximum changes in mean threshold cycle values observed at −80°C storage in Cary-Blair medium (from 29·4 [SD 0·27] at baseline to 30·8 [0·17] at day 7; p<0·0001), at 4°C storage in DNA/RNA Shield (from 28·5 [0·15] to 29·8 [0·09]; p=0·0019), and at ambient temperature in STAR buffer (from 30·4 [0·24] to 32·4 [0·62]; p=0·0083). 30 contrived SARS-CoV-2 samples were tested by a second laboratory and were correctly identified as positive or negative in at least one of two rounds of testing. Additionally, SARS-CoV-2 RNA was detected using this assay in the stool and anal swab specimens of 11 of 23 individuals known to be positive for SARS-CoV-2. Interpretation: This is a sensitive and reproducible assay for detection of SARS-CoV-2 RNA in human stool, with potential uses in faecal microbiota transplantation donor screening, sewage monitoring, and further research into the effects of faecal shedding on the epidemiology of the COVID-19 pandemic. Funding: National Institute of Allergy and Infectious Diseases, US National Institutes of Health; Center for Biologics Evaluation and Research, US Food and Drug Administration.
AB - Background: Faecal shedding of SARS-CoV-2 has raised concerns about transmission through faecal microbiota transplantation procedures. Validation parameters of authorised tests for SARS-CoV-2 RNA detection in respiratory samples are described in product labelling, whereas the published methods for SARS-CoV-2 detection from faecal samples have not permitted a robust description of the assay parameters. We aimed to develop and validate a test specifically for detection of SARS-CoV-2 in human stool. Methods: In this validation study, we evaluated performance characteristics of a reverse transcriptase real-time PCR (RT-rtPCR) test for detection of SARS-CoV-2 in human stool specimens by spiking stool with inactivated SARS-CoV-2 material. A modified version of the US Centers for Disease Control and Prevention RT-rtPCR SARS-CoV-2 test was used for detection of viral RNA. Analytical sensitivity was evaluated in freshly spiked stool by testing two-fold dilutions in replicates of 20. Masked samples were tested by a second laboratory to evaluate interlaboratory reproducibility. Short-term (7-day) stability of viral RNA in stool samples was assessed with four different stool storage buffers (phosphate-buffered saline, Cary-Blair medium, Stool Transport and Recovery [STAR] buffer, and DNA/RNA Shield) kept at −80°C, 4°C, and ambient temperature (approximately 21°C). We also tested clinical stool and anal swab specimens from patients who were SARS-CoV-2 positive by nasopharyngeal testing. Findings: The lower limit of detection of the assay was found to be 3000 viral RNA copies per g of original stool sample, with 100% detection across 20 replicates assessed at this concentration. Analytical sensitivity was diminished by approximately two times after a single freeze-thaw cycle at −80°C. At 100 times the limit of detection, spiked samples were generally stable in all four stool storage buffers tested for up to 7 days, with maximum changes in mean threshold cycle values observed at −80°C storage in Cary-Blair medium (from 29·4 [SD 0·27] at baseline to 30·8 [0·17] at day 7; p<0·0001), at 4°C storage in DNA/RNA Shield (from 28·5 [0·15] to 29·8 [0·09]; p=0·0019), and at ambient temperature in STAR buffer (from 30·4 [0·24] to 32·4 [0·62]; p=0·0083). 30 contrived SARS-CoV-2 samples were tested by a second laboratory and were correctly identified as positive or negative in at least one of two rounds of testing. Additionally, SARS-CoV-2 RNA was detected using this assay in the stool and anal swab specimens of 11 of 23 individuals known to be positive for SARS-CoV-2. Interpretation: This is a sensitive and reproducible assay for detection of SARS-CoV-2 RNA in human stool, with potential uses in faecal microbiota transplantation donor screening, sewage monitoring, and further research into the effects of faecal shedding on the epidemiology of the COVID-19 pandemic. Funding: National Institute of Allergy and Infectious Diseases, US National Institutes of Health; Center for Biologics Evaluation and Research, US Food and Drug Administration.
UR - http://www.scopus.com/inward/record.url?scp=85104971270&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85104971270&partnerID=8YFLogxK
U2 - 10.1016/S2666-5247(21)00059-8
DO - 10.1016/S2666-5247(21)00059-8
M3 - Article
C2 - 33821247
AN - SCOPUS:85104971270
SN - 2666-5247
VL - 2
SP - e259-e266
JO - The Lancet Microbe
JF - The Lancet Microbe
IS - 6
ER -