A Method for Quantifying Trunk Motor Control during Reaching in Individuals Post Hemiparetic Stroke

Kathleen C. Suvada, Jasjit Deol, Julius P.A. Dewald, Ana Maria Acosta

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

After a hemiparetic stroke, the contralesional upper limb is left with significant motor impairments including: weakness, spasticity, and abnormal joint torque patterns resulting in the flexion synergy (i.e. abnormal coupling between shoulder abduction and elbow/wrist and finger flexion). These impairments, and in particular the flexion synergy, limit ability to reach to the full extent of their limb workspace. Motor control of the trunk is also altered post stroke, with compromised ability to stabilize the trunk and excessive trunk movement during reaching, abnormal isometric torque coupling patterns in the transverse and sagittal planes and weakness. These motor impairments in both trunk and arm limit their ability to perform activities of daily living. While the effect of stroke on reaching has been studied extensively, less is known about the impact of deficits in trunk motor control on reaching ability and the impact of the flexion synergy on trunk postural control. Methods for investigating altered trunk control, specifically during a reach when concurrent loads that elicit the flexion synergy are imposed on the limb and trunk, are limited. Specifically, trunk deficits have yet to be studied in the context of the flexion synergy whereby loads imposed on the arm to elicit shoulder abduction have a negative impact on reaching and potentially on trunk posture. In order to address this gap, we developed a system that integrates a robotic device to simulate varied reaching environments, surface electromyography to measure primary trunk and arm muscle activity, and a two-camera motion capture system that uses reflective markers to measure trunk and arm movement. Feasibility and usability of the system was established during evaluation of reaching ability with varying levels of shoulder abduction loads while the trunk is either restrained or unrestrained in two participants with stroke and a healthy control.Clinical Relevance - The system presented here is capable of monitoring changes in trunk postural control after a hemiparetic stroke during a reaching task as a first step in furthering our understanding of changes in trunk motor control during reaching with the goal of developing more targeted and effective interventions for stroke rehabilitation.

Original languageEnglish (US)
Title of host publication42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society
Subtitle of host publicationEnabling Innovative Technologies for Global Healthcare, EMBC 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3743-3746
Number of pages4
ISBN (Electronic)9781728119908
DOIs
StatePublished - Jul 2020
Event42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020 - Montreal, Canada
Duration: Jul 20 2020Jul 24 2020

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2020-July
ISSN (Print)1557-170X

Conference

Conference42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020
CountryCanada
CityMontreal
Period7/20/207/24/20

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint Dive into the research topics of 'A Method for Quantifying Trunk Motor Control during Reaching in Individuals Post Hemiparetic Stroke'. Together they form a unique fingerprint.

Cite this