A methyldiazene (HN=N-CH3)-derived species bound to the nitrogenase active-site FeMo cofactor: Implications for mechanism

Brett M. Barney, Dmitriy Lukoyanov, Tran Chin Yang, Dennis R. Dean*, Brian M. Hoffman, Lance C. Seefeldt

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

73 Scopus citations


Methyldiazene (HN=N-CH3) isotopomers labeled with 15N at the terminal or internal nitrogens or with 13C or 2H were used as substrates for the nitrogenase α-195Gln- substituted MoFe protein. Freeze quenching under turnover traps an S = 1/2 state that has been characterized by EPR and 1H-, 15N-, and 13C-electron nuclear double resonance spectroscopies. These studies disclosed the following: (i) a methyldiazene-derived species is bound to the active-site FeMo cofactor; (ii) this species binds through an [-NHx] fragment whose N derives from the methyldiazene terminal N; and (iii) the internal N from methyldiazene probably does not bind to FeMo cofactor. These results constrain possible mechanisms for reduction of methyldiazene. In the Chatt-Schrock mechanism for N2 reduction, H atoms sequentially add to the distal N before N-N bond cleavage (d-mechanism). In a d-mechanism for methyldiazene reduction, a bound [-NHx] fragment only occurs after reduction by three electrons, which leads to N-N bond cleavage and the release of the first NH3. Thus, the appearance of bound [-NHx] is compatible with the d-mechanism only if it represents a late stage in the reduction process. In contrast are mechanisms where H atoms add alternately to distal and proximal nitrogens before N-N cleavage (a-mechanism) and release of the first NH3 after reduction by five electrons. An [-NHx] fragment would be bound at every stage of methyldiazene reduction in an a-mechanism. Although current information does not rule out the d-mechanism, the a-mechanism is more attractive because proton delivery to substrate has been specifically compromised in α-195Gln-substituted MoFe protein.

Original languageEnglish (US)
Pages (from-to)17113-17118
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Issue number46
StatePublished - Nov 14 2006


  • Diazene
  • Dinitrogen
  • Intermediate
  • Reduction

ASJC Scopus subject areas

  • General


Dive into the research topics of 'A methyldiazene (HN=N-CH3)-derived species bound to the nitrogenase active-site FeMo cofactor: Implications for mechanism'. Together they form a unique fingerprint.

Cite this