A model of semitendinosus muscle sarcomere length, knee and hip joint interaction in the frog hindlimb

Michael T. Mai, Richard L. Lieber*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

38 Scopus citations

Abstract

The interaction between the semitendinosus muscle and both hip and knee joint angles was examined in the frog (Rana pipiens) hindlimb. Sarcomere length was measured by laser diffraction in passive muscle during hip and knee rotation. A model was then developed to predict semitendinosus sarcomere length as a function of both hip and knee flexion angle. Based on published frog muscle fiber length-tension [Gordon, A. M. et al., J. Physiol. 184, 170-192 (1966)] and force-velocity [Edman, K. A. P., J. Physiol. 291, 143-159 (1979)] properties, and published joint angles during hopping [Calow, L. J. and Alexander, R. McN., J. Zool. (Lond.) 171, 293-321 (1973)], muscle sarcomere length, force and hip and knee torque during a hop were predicted. The semitendinosus muscle generally operated on the descending limb of the length-tension curve at normal joint angle combinations. The model predicted that, during a single coordinated movement, a period of sarcomere shortening (concentric) was followed by a period of sarcomere lengthening (eccentric). Based on calculated torque profiles at the hip and knee joints, this study suggested that the semitendinosus muscle probably functions more as a hip extensor than a knee flexor. In addition, based on the nature of the shortening-lengthening cycle, the semitendinosus may act to mechanically link the force of knee extension to hip extension.

Original languageEnglish (US)
Pages (from-to)271-279
Number of pages9
JournalJournal of Biomechanics
Volume23
Issue number3
DOIs
StatePublished - 1990

ASJC Scopus subject areas

  • Biophysics
  • Orthopedics and Sports Medicine
  • Biomedical Engineering
  • Rehabilitation

Fingerprint Dive into the research topics of 'A model of semitendinosus muscle sarcomere length, knee and hip joint interaction in the frog hindlimb'. Together they form a unique fingerprint.

Cite this