A new evaluation framework for topic modeling algorithms based on synthetic corpora

Hanyu Shi, Martin Gerlach, Isabel Diersen, Doug Downey, Luís A.N. Amaral*

*Corresponding author for this work

Research output: Contribution to conferencePaperpeer-review

Abstract

Topic models are in widespread use in natural language processing and beyond. Here, we propose a new framework for the evaluation of probabilistic topic modeling algorithms based on synthetic corpora containing an unambiguously defined ground truth topic structure. The major innovation of our approach is the ability to quantify the agreement between the planted and inferred topic structures by comparing the assigned topic labels at the level of the tokens. In experiments, our approach yields novel insights about the relative strengths of topic models as corpus characteristics vary, and the first evidence of an “undetectable phase” for topic models when the planted structure is weak. We also establish the practical relevance of the insights gained for synthetic corpora by predicting the performance of topic modeling algorithms in classification tasks in real-world corpora.

Original languageEnglish (US)
StatePublished - 2020
Event22nd International Conference on Artificial Intelligence and Statistics, AISTATS 2019 - Naha, Japan
Duration: Apr 16 2019Apr 18 2019

Conference

Conference22nd International Conference on Artificial Intelligence and Statistics, AISTATS 2019
CountryJapan
CityNaha
Period4/16/194/18/19

ASJC Scopus subject areas

  • Artificial Intelligence
  • Statistics and Probability

Fingerprint Dive into the research topics of 'A new evaluation framework for topic modeling algorithms based on synthetic corpora'. Together they form a unique fingerprint.

Cite this