A new level-set based approach to shape and topology optimization under geometric uncertainty

Shikui Chen, Wei Chen*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

107 Scopus citations


Geometric uncertainty refers to the deviation of the geometric boundary from its ideal position, which may have a non-trivial impact on design performance. Since geometric uncertainty is embedded in the boundary which is dynamic and changes continuously in the optimization process, topology optimization under geometric uncertainty (TOGU) poses extreme difficulty to the already challenging topology optimization problems. This paper aims to solve this cutting-edge problem by integrating the latest developments in level set methods, design under uncertainty, and a newly developed mathematical framework for solving variational problems and partial differential equations that define mappings between different manifolds. There are several contributions of this work. First, geometric uncertainty is quantitatively modeled by combing level set equation with a random normal boundary velocity field characterized with a reduced set of random variables using the Karhunen-Loeve expansion. Multivariate Gauss quadrature is employed to propagate the geometric uncertainty, which also facilitates shape sensitivity analysis by transforming a TOGU problem into a weighted summation of deterministic topology optimization problems. Second, a PDE-based approach is employed to overcome the deficiency of conventional level set model which cannot explicitly maintain the point correspondences between the current and the perturbed boundaries. With the explicit point correspondences, shape sensitivity defined on different perturbed designs can be mapped back to the current design. The proposed method is demonstrated with a bench mark structural design. Robust designs achieved with the proposed TOGU method are compared with their deterministic counterparts.

Original languageEnglish (US)
Pages (from-to)1-18
Number of pages18
JournalStructural and Multidisciplinary Optimization
Issue number1
StatePublished - Jul 1 2011


  • Geometric uncertainty
  • Level set method
  • Shape optimization
  • Topology optimization

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Computer Science Applications
  • Computer Graphics and Computer-Aided Design
  • Control and Optimization


Dive into the research topics of 'A new level-set based approach to shape and topology optimization under geometric uncertainty'. Together they form a unique fingerprint.

Cite this