Abstract
Retinal ganglion cells (RGCs) drive diverse, light-evoked behaviors that range from conscious visual perception to subconscious, non–image-forming behaviors. It is thought that RGCs primarily drive these functions through the release of the excitatory neurotransmitter glutamate. We identified a subset of melanopsin-expressing intrinsically photosensitive RGCs (ipRGCs) in mice that release the inhibitory neurotransmitter g-aminobutyric acid (GABA) at non–image-forming brain targets. GABA release from ipRGCs dampened the sensitivity of both the pupillary light reflex and circadian photoentrainment, thereby shifting the dynamic range of these behaviors to higher light levels. Our results identify an inhibitory RGC population in the retina and provide a circuit-level mechanism that contributes to the relative insensitivity of non–image-forming behaviors at low light levels.
Original language | English (US) |
---|---|
Pages (from-to) | 527-531 |
Number of pages | 5 |
Journal | Science |
Volume | 368 |
Issue number | 6490 |
DOIs | |
State | Published - May 1 2020 |
Funding
This work was funded by a Klingenstein-Simons Fellowship in the Neurosciences to T.M.S., a Sloan Research Fellowship to T.M.S., NIH grant 1DP2EY022584 to T.M.S, NIH T32 EY025202 to support T.S., and NIH F31 EY030360-01 to T.S.
ASJC Scopus subject areas
- General