A novel crosslinking protocol stabilizes amyloid β oligomers capable of inducing Alzheimer's-associated pathologies

Erika N. Cline, Arighno Das, Maíra Assunção Bicca, Saad N. Mohammad, Luis F. Schachner, Josette M. Kamel, Nadia DiNunno, Anthea Weng, Jacob D. Paschall, Riana Lo Bu, Faraz M. Khan, Madeline G. Rollins, Ashley N. Ives, Gajendra Shekhawat, Nilson Nunes-Tavares, Fernando G. de Mello, Philip D. Compton, Neil L. Kelleher, William L. Klein*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

7 Scopus citations


Amyloid β oligomers (AβOs) accumulate early in Alzheimer's disease (AD) and experimentally cause memory dysfunction and the major pathologies associated with AD, for example, tau abnormalities, synapse loss, oxidative damage, and cognitive dysfunction. In order to develop the most effective AβO-targeting diagnostics and therapeutics, the AβO structures contributing to AD-associated toxicity must be elucidated. Here, we investigate the structural properties and pathogenic relevance of AβOs stabilized by the bifunctional crosslinker 1,5-difluoro-2,4-dinitrobenzene (DFDNB). We find that DFDNB stabilizes synthetic Aβ in a soluble oligomeric conformation. With DFDNB, solutions of Aβ that would otherwise convert to large aggregates instead yield solutions of stable AβOs, predominantly in the 50–300 kDa range, that are maintained for at least 12 days at 37°C. Structures were determined by biochemical and native top–down mass spectrometry analyses. Assayed in neuronal cultures and i.c.v.-injected mice, the DFDNB-stabilized AβOs were found to induce tau hyperphosphorylation, inhibit choline acetyltransferase, and provoke neuroinflammation. Most interestingly, DFDNB crosslinking was found to stabilize an AβO conformation particularly potent in inducing memory dysfunction in mice. Taken together, these data support the utility of DFDNB crosslinking as a tool for stabilizing pathogenic AβOs in structure-function studies. (Figure presented.).

Original languageEnglish (US)
Pages (from-to)822-836
Number of pages15
JournalJournal of neurochemistry
Issue number6
StatePublished - Mar 2019


  • Alzheimer's disease
  • amyloid beta oligomers
  • crosslinking
  • structure–function relationships

ASJC Scopus subject areas

  • Biochemistry
  • Cellular and Molecular Neuroscience

Fingerprint Dive into the research topics of 'A novel crosslinking protocol stabilizes amyloid β oligomers capable of inducing Alzheimer's-associated pathologies'. Together they form a unique fingerprint.

Cite this