TY - JOUR
T1 - A novel crosslinking protocol stabilizes amyloid β oligomers capable of inducing Alzheimer's-associated pathologies
AU - Cline, Erika N.
AU - Das, Arighno
AU - Bicca, Maíra Assunção
AU - Mohammad, Saad N.
AU - Schachner, Luis F.
AU - Kamel, Josette M.
AU - DiNunno, Nadia
AU - Weng, Anthea
AU - Paschall, Jacob D.
AU - Bu, Riana Lo
AU - Khan, Faraz M.
AU - Rollins, Madeline G.
AU - Ives, Ashley N.
AU - Shekhawat, Gajendra
AU - Nunes-Tavares, Nilson
AU - de Mello, Fernando G.
AU - Compton, Philip D.
AU - Kelleher, Neil L.
AU - Klein, William L.
PY - 2019/3
Y1 - 2019/3
N2 - Amyloid β oligomers (AβOs) accumulate early in Alzheimer's disease (AD) and experimentally cause memory dysfunction and the major pathologies associated with AD, for example, tau abnormalities, synapse loss, oxidative damage, and cognitive dysfunction. In order to develop the most effective AβO-targeting diagnostics and therapeutics, the AβO structures contributing to AD-associated toxicity must be elucidated. Here, we investigate the structural properties and pathogenic relevance of AβOs stabilized by the bifunctional crosslinker 1,5-difluoro-2,4-dinitrobenzene (DFDNB). We find that DFDNB stabilizes synthetic Aβ in a soluble oligomeric conformation. With DFDNB, solutions of Aβ that would otherwise convert to large aggregates instead yield solutions of stable AβOs, predominantly in the 50–300 kDa range, that are maintained for at least 12 days at 37°C. Structures were determined by biochemical and native top–down mass spectrometry analyses. Assayed in neuronal cultures and i.c.v.-injected mice, the DFDNB-stabilized AβOs were found to induce tau hyperphosphorylation, inhibit choline acetyltransferase, and provoke neuroinflammation. Most interestingly, DFDNB crosslinking was found to stabilize an AβO conformation particularly potent in inducing memory dysfunction in mice. Taken together, these data support the utility of DFDNB crosslinking as a tool for stabilizing pathogenic AβOs in structure-function studies. (Figure presented.).
AB - Amyloid β oligomers (AβOs) accumulate early in Alzheimer's disease (AD) and experimentally cause memory dysfunction and the major pathologies associated with AD, for example, tau abnormalities, synapse loss, oxidative damage, and cognitive dysfunction. In order to develop the most effective AβO-targeting diagnostics and therapeutics, the AβO structures contributing to AD-associated toxicity must be elucidated. Here, we investigate the structural properties and pathogenic relevance of AβOs stabilized by the bifunctional crosslinker 1,5-difluoro-2,4-dinitrobenzene (DFDNB). We find that DFDNB stabilizes synthetic Aβ in a soluble oligomeric conformation. With DFDNB, solutions of Aβ that would otherwise convert to large aggregates instead yield solutions of stable AβOs, predominantly in the 50–300 kDa range, that are maintained for at least 12 days at 37°C. Structures were determined by biochemical and native top–down mass spectrometry analyses. Assayed in neuronal cultures and i.c.v.-injected mice, the DFDNB-stabilized AβOs were found to induce tau hyperphosphorylation, inhibit choline acetyltransferase, and provoke neuroinflammation. Most interestingly, DFDNB crosslinking was found to stabilize an AβO conformation particularly potent in inducing memory dysfunction in mice. Taken together, these data support the utility of DFDNB crosslinking as a tool for stabilizing pathogenic AβOs in structure-function studies. (Figure presented.).
KW - Alzheimer's disease
KW - DFDNB
KW - amyloid beta oligomers
KW - crosslinking
KW - structure–function relationships
UR - http://www.scopus.com/inward/record.url?scp=85060749937&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85060749937&partnerID=8YFLogxK
U2 - 10.1111/jnc.14647
DO - 10.1111/jnc.14647
M3 - Article
C2 - 30565253
AN - SCOPUS:85060749937
VL - 148
SP - 822
EP - 836
JO - Journal of Neurochemistry
JF - Journal of Neurochemistry
SN - 0022-3042
IS - 6
ER -