Abstract
A mutation in the sodium channel SCN1A was identified in a small Italian family with dominantly inherited generalized epilepsy with febrile seizures plus (GEFS+). The mutation, D1866Y, alters an evolutionary conserved aspartate residue in the C-terminal cytoplasmic domain of the sodium channel α subunit. The mutation decreased modulation of the α subunit by β1, which normally causes a negative shift in the voltage dependence of inactivation in oocytes. There was less of a shift with the mutant channel, resultingin a 10 mV difference between the wild-type and mutant channels in the presence of β1. This shift increased the magnitude of the window current, which resulted in more persistent current during a voltage ramp. Computational analysis suggests that neurons expressing the mutant channels will fire an action potential with a shorter onset delay in response to a threshold current injection, and that they will fire multiple action potentials with a shorter interspike interval at a higher input stimulus. These results suggest a causal relationship between a positive shift in the voltage dependence of sodium channel inactivation and spontaneous seizure activity. Direct interaction between the cytoplasmic C-terminal domain of the wild-type α subunit with the β1 or β3 subunit was first demonstrated by yeast two-hybrid analysis. The SCN1A peptide K1846-R1886 is sufficient for β subunit interaction. Coimmunoprecipitation from transfected mammalian cells confirmed the interaction between the C-terminal domains of the α and β1 subunits. The D1866Y mutation weakens this interaction, demonstrating a novel molecular mechanism leading to seizure susceptibility.
Original language | English (US) |
---|---|
Pages (from-to) | 10022-10034 |
Number of pages | 13 |
Journal | Journal of Neuroscience |
Volume | 24 |
Issue number | 44 |
DOIs | |
State | Published - Nov 3 2004 |
Keywords
- Channel
- Epilepsy
- Genetics
- Kinetic (kinetics)
- Mutant
- Sodium (Na)
ASJC Scopus subject areas
- General Neuroscience